研究生: |
陳毅修 Chen, Yi-Hsiu |
---|---|
論文名稱: |
A Synchronization Scheme Based on Interleaved Partial Zadoff-Chu Sequences for Cooperative MIMO Systems 基於交錯式部分扎德奧夫-朱序列之合作式多輸入多輸出系統的同步技術 |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
李志鵬
蔡育仁 歐陽源 王晉良 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 扎德奧夫-朱序列 、多輸入多輸出系統 、合作式多輸入多輸出系統 、同步技術 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合作式多輸入多輸出(MIMO, multiple-input multiple-output)技術因可有效提升系統效能與增加傳輸速率,近年來已受到相當大的關注。同時,將正交分頻多工(OFDM, orthogonal frequency-division multiplexing)和MIMO傳輸技術相互結合產生的MIMO-OFDM技術也已成為下一代無線傳輸系統的主要技術。而合作式多輸入多輸出(cooperative MIMO)技術將散佈於空間中的數個單天線裝置加以聯合創造出虛擬陣列天線,也受到相當大的關注。但在合作式多輸入多輸出系統中,由於各個節點傳送的信號到達接收端時間並不一致,且會受到不同的頻率偏移(CFO, carrier frequency offset)影響,其同步技術則更具挑戰性。
在此論文中,我們針對cooperative MIMO系統提出基於部分扎德奧夫-朱序列(partial Zadoff-Chu sequence)的訓練序列與同步技術。在我們所提出的訓練序列設計中,我們以交錯方式將部分Zadoff-Chu序列擺放在互斥集合所包含的子載波上。此擺放方式不僅保證訓練序列在頻域之分離性,亦導致其時域訊號之可區隔特性;此特性除可同時降低訓練序列間之相互干擾,亦可在時域完成多載波頻率偏移之估測。相較於現今同步技術,我們所提出的方法可在時域完
成所有時間與頻率同步動作。除此之外,我們所提的訓練序列有良好的自相關和互相關特性,因此在同步的效能上有卓越的表現。
Recently, cooperative multiple-input multiple-output (MIMO) systems have attracted increasing attention for their feasibility and flexibility over MIMO systems. Meanwhile, combining cooperative MIMO systems with orthogonal frequency division multiplexing (OFDM) has been recognized as a promising technology to support next-generation wireless communication systems. In cooperative MIMO systems, however, the signals transmitted by cooperating nodes may arrive at the receiver on distinct timing and be affected by multiple carrier frequency offsets (CFOs). As a result, synchronization is a challenging and important task in cooperative MIMO systems.
In this thesis, we propose a synchronization scheme based on partial Zadoff-Chu sequences for cooperative MIMO systems. In the proposed preamble design, partial Zadoff-Chu sequences are placed on disjoint sets of subcarriers in an interleaved manner. Such an arrangement not only guarantees frequency-domain training signal separation, but also produces separable time-domain training signals to cope with the multiple CFOs. Accordingly, both time and frequency synchronization can be done in the time domain, while they are achieved in the time and frequency domains, respectively, in most existing synchronization schemes for cooperative MIMO systems. Furthermore, the proposed training sequences enjoy good auto-correlation and cross-correlation properties, which leads to superior synchronization performance as compared with existing synchronization schemes.
[1] C.-L. Wang, H.-C. Wang, and Y.-Y. Chen, “A synchronization scheme based on partial Zadoff-Chu sequences for cooperative MIMO OFDM systems,” in Proc. 2012 IEEE Wireless Commun. Netw. Conf. (WCNC 2012), Paris, France, Apr. 2012.
[2] G. Yang, C.-L. Wang, H.-C. Wang, and S.-Q. Li, “A new synchronization scheme for OFDM-based cooperative relay systems,” in Proc. 2010 IEEE Global Telecommun. Conf. (GLOBECOM 2010), Miami, FL, Dec. 2010.
[3] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. 19, no. 10, pp. 628-634, Oct. 1971.
[4] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
[5] IEEE, “IEEE standard for local and metropolitan area networks-Part 16: Air interface for fixed broadband wireless access systems,” IEEE Std. 802.16-2004, Oct. 2004.
[6] IEEE, “Part 16: Air Interface for Fixed Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” IEEE Std. 802.16e, 2005.
[7] 3GPP TS 36.300 V8.5.0: “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,” May 2008.
[8] ETSI, “Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television,” ETSI EN 300 744 V1.4.1, Jan. 2001.
[9] IEEE, “IEEE standard for local and metropolitan area networks-Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” IEEE Std. 802.11, Aug. 1999.
[10] IEEE, “Part 11: Wireless LAN Medium Access control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Enhancements for Higher Throughput,” IEEE Std. P802.11n/D3.00: Draft, Sept. 2007.
[11] G. L. Stüber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. of the IEEE, vol. 92, no. 2, pp. 271-294, Feb. 2004.
[12] Allert van Zelst and Tim C. W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 483-494, Feb. 2004.
[13] H.-C. Wang and C.-L. Wang, “A new joint time synchronization and channel estimation scheme for MIMO-OFDM systems,” in Proc. 2006 IEEE Global Commun. Conf. (GLOBECOM2006), San Francisco, California, Nov. 2006.
[14] C.-L. Wang and H.-C. Wang, “Optimized joint fine timing synchronization and channel estimation for MIMO systems,” IEEE Trans. Commun., vol. 59, no. 4, pp. 1089-1098, Apr. 2011.
[15] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part I. System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
[16] J. Laneman and G. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415-2425, Oct. 2003.
[17] C.-P Li and W.-C. Huang, “A constructive representation for the fourier dual of the Zadoff-Chu sequences,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 4221-4224, Nov. 2007.
[18] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer’s Companion. The Institute of Electrical and Electronics Engineers, Inc., Dec. 1999.