簡易檢索 / 詳目顯示

研究生: 許嘉倫
Hsu, Chia-Lun
論文名稱: Interfacial Electrical Properties of In-situ ALD-HfAlO/GaAs MOS Capacitor
原位原子層沉積成長氧化鉿鋁/砷化鎵之介面及其電性研究
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, Ray Nien
口試委員: □振瀛
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 70
中文關鍵詞: 原位原子層沉積氧化鉿鋁砷化鎵電晶體
外文關鍵詞: ALD, HfAlO, GaAs, MOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The scaling of Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs) is approaching to the physical limitations when scaling down. One potential solution is to replace to the traditional SiO2/Si MOS structure with high k oxide/GaAs.
    In this work, in-situ ALD-HfAlO on n-GaAs and p-GaAs without using interfacial passivation layers and chemical treatments between oxide/III-V interfaces were performed in a multi-chamber UHV MBE/ALD system.
    The C-V frequency dispersions were 59% and 23% on n- and p- GaAs, respectively. After RTA at 850oC in He for 10 sec, the frequency dispersion were decreased to 30% for n-type and 13% for p-type. The electrical property shows the structure has high thermal stability. The ALD-HfAlO/GaAs stack has a high dielectric constant ranged from 13.8 to 15, and the CET was decreased to 1.18nm.
    The study shows that in-situ ALD-HfAlO is a suitable dielectric oxide for MOSFETs design due to its effective passivation of GaAs surface and excellent thermodynamic stability after RTA to 850oC for S/D activation.


      隨著互補式金氧半場效電晶體(MOSFETs)電子元件尺寸的縮小,現有的矽半導體相關的電子元件已面臨本質材料特性與技術上前所未有的挑戰,如此一來,我們必須要具備有高載子遷移率之半導體材料,像是三五族半導體砷化鎵,再搭配高介電常數氧化物成為未來發展的趨勢。
      本實驗藉著原子層沉積法成長高介電常數氧化鉿鋁於乾淨的砷化鎵半導體通道上,過程中全部都在超高真空系統中進行。
      在經過850oC快速高溫氦氣退火10秒後,由MOSCAP的電容電壓曲線量測結果顯示在聚積層和空乏層中電容的分散趨勢有明顯的縮小,n型半導體砷化鎵由59%降低到30%,p型半導體砷化鎵由23%降低到13%,這說明了我們實驗室利用超高真空系統原子層沉積方式成長氧化鉿鋁在砷化鎵半導體上有良好的熱定性,並且有相當高的介電常數接近13.8到15,同時可降低電容等效氧化厚度(CET)到達1.18奈米左右。
      為了要活化場效電晶體的源極與汲極區,電晶體必須要能夠耐熱到850oC以上快速高溫退火,因此,原子層沉積氧化鉿鋁在砷化鎵半導體上,具有高發展潛力做為未來場效電晶體的設計。

    中文摘要 IIV Abstract III 致謝 IV Table of Content VII Figure Captions IX Table Captions XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Alternative High-k dielectrics 3 1.3 Motivation and Challenges of III-V Channel Materials Beyond Si CMOS 5 1.4 High-k Dielectrics on III-V InGaAs 7 Chapter 2 Theory and Instrumentations 10 2.1 Principles of Atomic Layer Deposition 10 2.1.1 Basic characteristic of ALD 10 2.1.2 General characteristics of the surface chemistry of ALD 11 2.1.3 Other ALD high-k materials 11 2.2 Ultra-High Vacuum Multi-Chamber MBE System 17 2.2.1 Molecular beam epitaxy 17 2.2.2 Reflection high energy electron diffraction (RHEED) 19 2.3 X-ray Photoelectron Spectroscopy 22 2.3.1 Instrumentation 22 2.3.2 Primary structure 23 2.3.3 Angular effect 24 2.4 X-ray Reflectivity 26 2.5 High-Resolution Transmission Electron Microscope 27 2.6 Fundamental of The Metal-Oxide-Semiconductor 28 2.6.1 The ideal MOS capacitor 28 2.6.2 Non-ideal effects in MOS capacitors 32 2.6.3 Interfacial trapped charge Analysis 33 2.6.4 Charges in Oxide 35 Chapter 3 Experimental Procedures 36 3.1 Experimental requirement 36 3.2 Film Deposition in Ultra-high Vacuum Multi-chamber system 36 3.2.1 Substrate Preparation 37 3.2.2 GaAs (001) buffer layer deposition 37 3.3 In-situ Angle-resolved X-ray Photoelectron Spectroscopy 42 3.4 High resolution transmission electron microscopy 42 3.5 Metal electrode deposition 43 3.6 Electrical Properties Measurement 43 Chapter 4 Results and Discussions 44 4.1 HR-TEM Image of Interface 44 4.2 In-situ ALD-HfAlO/HfO2 (~9.2nm) on GaAs(001) 45 4.2.1 ALD-HfAlO/HfO2 (~9.2nm) on (4x6) surface reconstruction GaAs (001) 45 4.2.2 Thermodynamic stability of ALD-HfAlO/HfO2 on n-GaAs 47 4.2.3 Leakage current and breakdown electric-field study of ALD-HfAlO/HfO2 on GaAs 50 4.2.4 High frequency C-V loops for a MOS capacitor 52 4.2.5 C-V characteristics with different annealing temperature 53 4.3 In-situ ALD-HfAlO/HfO2 (~4.5nm) on p-GaAs(001) 54 4.3.1 ALD-HfAlO/HfO2 (~4.5nm) on (4x6) surface reconstruction p-GaAs(001) 54 4.3.2 Thermodynamic stability of ALD-HfAlO/HfO2 on p-GaAs 55 4.3.3 Leakage current and breakdown electric-field study of ALD-HfAlO/HfO2 (4.5nm) on p-GaAs 58 4.3.4 High frequency C-V loops for a MOS capacitor 59 4.4 XPS analysis of ALD-HfAlO/p-GaAs (001) interface 60 4.4.1 XPS analysis of ALD-HfAlO on GaAs (001) interface 60 4.4.2 ALD-HfAlO on p-GaAs (001) Band offsets 65 Chapter 5 Conclusion 67 References 68

    1 F. Wanlass and C. T. Sah, IEEE Technical digest of Int. Solid-state circuit Conf., pp. 32–33, 1963.
    2 http://en.wikipedia.org/wiki/Wiki
    3 International Technology Roadmap for Semiconductors, Semiconductor Industry Association (2001).
    4 D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, Nature 399, 758 (1999).
    5 J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).
    6 http://en.wikipedia.org/wiki/High-k/.
    7 http://www.ioffe.rssi.ru/SVA/NSM/Semicond/.
    8 M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 68, 1099–1101 (1996).
    9 M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, IEEE Transactions on Electron Devices, pp. 214–225, Feb. (1997).
    10 M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science, vol. 283, no. 5409, pp. 1897–1900 (1999).
    11 Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, IEEE Electron Device Letters, vol. 20, pp. 457–459 (1999).
    12 F. Ren, J. Kuo, M. Hong, W. Hobson, J. Lothian, J. Lin, H. Tsai, J. Mannaerts, J. Kwo, S. Chu, Y. Chen, and A. Cho, IEEE Electron Device Letters, vol. 19, pp. 309–311 (1998).
    13 M. Hong, J. N. Baillargeon, J. Kwo, J. P. Mannaerts, and A. Y. Cho, Compound Semiconductors, 2000 IEEE nternational Symposium on, pp. 345–350 (2000).
    14 Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, H. S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electronics Letters, (1999).
    15 M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, and P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104, (2005).
    16 C. H. Chang, Y. K. Chiu, Y. C. Chang, K. Y. Lee, T. D. Lin, T.B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006).
    17 C. L. Hinkle, A. M. Sonnet, M. Milojevic, F. S. Aguirre-Tostado, H. C. Kim, J. Kim, R. M. Wallace, and E. M. Vogel, Appl. Phys. Lett. 93, 113506 (2008).
    18 D. Shahrjerdi, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 91, 063501 (2007).
    19 M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 252905 (2008).
    20 H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, M. Heyns, Microelectron. Eng. 86, 1554(2009).
    21 C. W. Cheng, J. Hennessy, D. Antoniadis, and E. A. Fitzgerald, Appl. Phys. Lett. 95, 082106 (2009).
    22 S. J. Koester, E. W. Kiewra, Y. Sun, D. A. Neumayer, J. A. Ott, M. Copel, and D. K. Sadana, Appl. Phys. Lett. 89, 042104 (2006).
    23 H. S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, Appl. Phys. Lett. 88, 252906 (2006).
    24 M. Zhu, C. H. Tung, and Y. C. Yeo, Appl. Phys. Lett. 89, 202903 (2006).
    25 R. Kambhampati, ECS Trans. 11, 431 (2007).
    26 R. Suri, J. of Appl. Phys. 93, 193504 (2008).
    27 T. Gougousi, Journal of The Electrochemical Society, 157 (5) H551-H556(2010).
    28 G. D. Wilk, Journal of Applied Physics,vol. 89, no. 10, pp. 5243–5275, (2001).
    29 J. Robertson, Journal of vacuum Science and Technology B, vol. 18, no. 3, pp. 1785–1791, (2000).
    30 W. Braun, “Applied RHEED”, Springer-Verlag, (1999).
    31 H. Craig Casey, jr., “Devices For Integrated Circuits Silicon And III-V compound semiconductors. ” , Wiley, Chap 7, p.335.
    32 D. Briggs, “Practical Surface Analysis”, Chapter 4, Thomson Press, New Delhi (1990).
    33 S. M. Sze, and K. K. Ng, Physics of Semiconductor Device, Wiley-Interscience (2007).
    34 D. K. Schroder, Semiconductor Material and Device Characterization, Wiley- Interscience (2006).
    35 Dietter K. Schroder, “Semiconductor Material and Device Characterization”, Wiley.
    36 J. F. Zheng, W. Tsai, T. D. Lin, Y. J. Lee, C. P. Chen, M. Hong, J. Kwo, S. Cui, and T. P. Ma, Appl. Phys. Lett. 91, 223502 (2007).
    37 T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, Appl. Phys. Lett. 93, 033516 (2008).
    38 M. L. Huang, Y. C. Chang, Y. H. Chang, T. D. Lin, J. Kwo, and M. Hong Appl. Phys. Lett. 94, 052106 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE