簡易檢索 / 詳目顯示

研究生: 丁維若
Ting, Wei Jo
論文名稱: N2O 與H3+之精密中紅外光譜研究
Precision Mid-IR Spectroscopy of N2O and H3+
指導教授: 施宙聰
Shy, Jow Tsong
口試委員: 蔡錦俊
鄭王曜
周哲仲
陳益佳
劉怡維
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 87
中文關鍵詞: 中紅外光譜光頻梳一氧化二氮飽和吸收光譜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用一套窄線寬(< 100 kHz)、波長可調(2.66 − 4.77 μm)、高功率(> 3 mW)的中紅外差頻雷射光源,結合光頻梳來進行量測分子與分子離子的轉動振動光譜。本論文的內容分為兩個部分,第一個部分是分子光譜的精密量測−以N2O氣體分子基頻帶光譜(1000 ← 0000)為例;第二個部分是分子離子光譜的精密量測−以𝐻3+離子光譜為例。
    N2O氣體分子結構類似於CO2分子,在中紅外波段的高精密光譜量測,期望提供最準確的躍遷頻率作為理論計算驗證的基礎。在4.5 μm 1000 ← 0000實驗,結合頻率調制技術及飽和吸收光譜的實驗架構,觀測了44條躍遷,得到高訊雜比之飽和吸收譜線。頻率測量的方法是將Nd:YAG雷射以碘分子穩頻,Ti:sapphire雷射鎖在N2O飽和吸收譜線的中心,並且以光頻梳(OFC)來校正其頻率,躍遷譜線的頻率準確優於95 kHz。此外,我們與Jet Propulsion Laboratory (JPL) Brian Drouin博士合作數據擬合分析,大幅改進分子常數的準確度,並進一步的修正N2O的理論模型及理論預測的頻率位置。
    H3+分子離子是由三個質子及兩個電子所組成的三原子分子,因其簡單結構,對於多原子分子系統它提供一個理論計算的檢驗基礎。到目前為止,大部分𝐻3+躍遷的是利用速度調制光譜方法觀測,以中性氣體之吸收譜線校正頻率,準確度約150~300 MHz。最近,我們實驗室及UIUC McCall研究群分別觀測H3+的飽和光譜,使用光頻梳可以將躍遷頻率的準確度推進至小於1 MHz。這些方法具備非常高的準確度,但系統較複雜、訊號較小,不太適用於弱的吸收譜線。本論文中,我們利用速度調制法來偵測H3+分子離子的振動轉動吸收譜線訊號,並藉由光頻梳系統來測量躍遷頻率,期望能提昇H3+分子離子弱吸收譜線躍遷頻率的準確度。我們量測H3+之R(1,0)譜線,並與飽和吸收光譜量測做比較,發現我們的系統準確度可達4 MHz。未來我們將改進Ti:sapphire OFC和PPLN DFG光譜的鎖頻的準確度,並檢驗弱吸收譜線的測量準確度,最後我們將廣泛地量測H3+譜線。



    ABSTRACT
    We report the application of a CW mid-infrared difference frequency generation (DFG) source with Optical Frequency Comb (OFC) to molecule and molecular ion spectroscopy. This DFG source has the characteristics of narrow linewidth (< 100 kHz), wide tuning range (2.66 − 4.77 μm) and good power level (> 3 mW). We have accomplished two high precision spectroscopic measurements: molecular spectroscopy of N2O and molecular ion spectroscopy of 𝐻3+.
    First, 44 transition lines of sub-Doppler profile of the 1000 ← 0000 N2O fundamental band at 4.5 μm are observed with the frequency modulation spectroscopy. The Nd:YAG laser is stabilized onto the iodine frequency standard line. The Ti:sapphire laser is locked onto the center of N2O transition and then beat with OFC for frequency measurement. The absolute frequencies of those transition lines are derived by fDFG =fTis − fYAG. The measurements of absolute frequencies for transitions up to J = 100 of the 1000 ← 0000 band are accomplished with an accuracy better than 95 kHz. For the molecular constant fitting analysis, we collaborated with Dr. Brian Drouin of Jet Propulsion Laboratory (JPL). With the help of the refined constants, the accuracy has been improved by two orders of magnitude compared with current HITRAN database.
    The tri-atomic hydrogen molecular ion 𝐻3+, consisting of three protons and two electrons, is the simplest polyatomic molecule. Due to its simple structure, it is the benchmark of accurate calculation of polyatomic molecule. So far, most of H3+ transitions are observed by the velocity modulation spectroscopy which eliminates the strong absorption line of neutral gas. The transition frequency accuracy is about 150~300 MHz. Recently, our lab and McCall’s group have measured the saturated absorption spectrum of H3+. These two works achieve frequency accuracy better than 1 MHz with the help of optic frequency comb (OFC). Although saturation spectroscopy provides high accuracy, but the spectroscopic systems are more complex and the signal are smaller. In this dissertation, we use the velocity modulation spectroscopy to detect the vibration-rotation absorption transition of H3+ molecular ion, and measure its absolute frequency. For R(1,0) line of H3+, the frequency accuracy of the absorption transition is improved to 4 MHz. In the future, we will improve the stability of the frequency locking of our Ti:sapphire frequency comb and PPLN DFG and test the measurement accuracy of a weak absorption line. Finally, we will extensively measure the weak absorption lines of H3+.

    CONTENTS i LIST OF FIGURES iii LIST OF TABLES vi 1 INTRODUCTION 1.1 Introduction 1 1.2 Achievements of this dissertation 3 1.3 Organization of this dissertation 4 References 5 2 BASIC BACKGROUND OF N2O AND H3+ 2.1 Basic background of N2O 7 2.1.1 General background 7 2.1.2 Structure of nitrous oxide molecule 7 2.1.3 Two types of perturbation of N2O 11 2.1.4 Spectroscopic Notation 13 2.1.5 Literature review of N2O fundamental band 14 2.2 Background of H3+ 15 2.2.1 General background 15 2.2.2 Structure of H3+ 17 2.2.3 Spectroscopic notation 18 References 24 3 FREQUENCY-COMB-REFERENCED MID-IR DIFFERENCE FREQ- UENCY GENERATION SOURCE 3.1 Principle of difference frequency generation 28 3.1.1 Nonlinear optics and periodically poled LiNOb3 crystal 29 3.1.2 Quasi-phase matching nonlinear frequency conversion 29 3.2 DFG laser systems 32 3.2.1 Ti:sapphire laser system 32 3.2.2 Power boosted Nd:YAG laser system 34 3.3 Frequency calibration 36 3.3.1 Iodine stabilized Nd:YAG laser 36 3.3.2 Optical frequency comb 37 3.4 Performance of comb referenced difference frequency generation source 38 Reference 39 4 SATURATION SPECTROSCOPY OF N2O 4.1 Precision frequency measurement saturation spectroscopy of N2O 40 4.1.1 Experimental approach 40 4.1.2 Experimental results 42 4.2 Pure rotational transitions beyond 151.5 μm from Jet Propulsion Laboratory (JPL) 48 4.3 Quantum mechanical analysis. 50 4.4 Discussion. 52 References 64 5 VELOCITY MODULATION SPECTROSCOPY OF H3+ 5.1 Velocity modulation spectroscopy 65 5.2 Line-shape of velocity modulation spectrum 67 5.3 Velocity modulation setup 69 5.4 Noise cancellation 73 5.5 Frequency measurements of H3+ 77 References 83 6 SUMMARY AND FUTURE WORK. 84 6.1 Summary 84 6.2 Future works 85 References 87

    Chapter1
    1. I. T. Sorokina and K. L. Vodopyanove, Solid-State Mid-Infrared Laser Sources (Springer, 2003), Topics in Applied Physics, Vol.89.
    2. O. Svelto et al., in Springer Handbook of Lasers and Optics, edited by F. Träger (Springer Berlin Heidelberg, 2012), p. 641.
    3. D. S. Hum and M. M. Fejer, Cr. Phys. 8, 180 (2007).
    4. F. Capasso, Opt. Eng. 49, 111102 (2010).
    5. A. Godard, Cr. Phys. 8, 1100 (2007).
    6. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, Opt. Lett.30, 997 (2005).
    7. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, Phys. Rev. A 80, 032518 (2009).
    8. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, Phys. Rev. Lett. 104, 110801 (2010).
    9. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, Opt. Express 19, 23878 (2011).
    10. M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, Opt. Lett. 37, 4422 (2012).
    11. A. S. Pine, J. Opt. Soc. Am. 64, 1683 (1974).
    12. S. A. Diddams et al., Phys. Rev. Lett. 84, 5102 (2000).
    13. T. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002).
    14. T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
    15. D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, and P. De Natale, J Opt. A:Pure Appl. Opt. 8, S490 (2006).
    16. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, M. De Rosa, and P. De Natale, Mol. Phys.110, 2103 (2012).
    17. H.-C. Chen, C.-Y. Hsiao, W.-J. Ting, S.-T. Lin, and J.-T. Shy, Opt. Lett. 37, 2409 (2012).
    18. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins Ii, and B. J. McCall, Chem. Phys. Lett. 551, 1 (2012).
    19. C.-C. Liao, Y.-H. Lien, K.-Y. Wu, Y.-R. Lin, and J.-T. Shy, Opt. Express. 21, 9238 (2013).
    20. C. Amiot and G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
    21. B. G. Whitford, K. J. Siemsen, H. D. Riccius, and G. R. Hanes, Opt. Commun. 14, 70 (1975).
    22. M. Tachikawa, K. M. Evenson, L. R. Zink, and A. G. Maki, IEEE J. Quantum Electron. 32, 1732 (1996).
    23. R. A. Toth, J. Opt. Soc. Am. B 4, 357 (1987).
    6
    24. T. Oka, Phys. Rev. Lett. 45, 531 (1980).
    25. J. K. G. Watson, S. C. Foster, A. R. W. McKellar, P. Bernath, T. Amano, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J. Phys. 62, 1875 (1984).
    26. K.-Y. Wu, Y.-H. Lien, C.-C. Liao, Y.-R. Lin, and J.-T. Shy, Phys. Rev. A 88, 032507 (2013).
    27. H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).
    28. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, M. De Rosa, and P. De Natale, Opt. Express 20, 9178 (2012).
    Chapter 2
    1. Methane and Nitrous Oxide Emissions from Natural Sources (U.S. Environmental Protection Agency, Washington, DC, USA, 2010).
    2. Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture (U.S. Environmental Protection Agency,Washington, DC, USA., 2005).
    3. Projected Greenhouse Gas Emissions. In: Fourth Climate Action Report to the UN Framework Convention on Climate Change (U. S. D. o. State, Washington, DC, USA., 2007).
    4. J. E. Collins, G. W. Sachse, B. E. Anderson, A. J. Weinheimer, J. G. Walega, and B. A. Ridley, Geophys.Res. Lett. 20, 2543 (1993).
    5. V. I. Perevalov, S. A. Tashkun, R. V. Kochanov, A. W. Liu, and A. Campargue, J. Quant. Spectrosc. Radiat. Transfer 113, 1004 (2012).
    6. A. G. Maki and J. s. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements (National Institute of Standards and Technology Special Publication 821, U.S. Government Printing Office, 1991).
    7. R. A. Toth, J. Opt. Soc. Am. B 4, 357 (1987).
    8. G. Herzberg, Molecular spectra and molecular structure (1991).
    9. M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).
    10. G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and
    Raman Spectra of Polyatomic Molecules (Van Nostrand, New York,, 1954).
    11. I. Morino, K. M. T. Yamada, and A. G. Maki, J. Mol. Spectrosc. 196, 131 (1999).
    12. R. A. Toth, J. Opt. Soc. Am. B 3, 1263 (1986).
    13. R. A. Toth, Appl. Opt. 30, 5289 (1991).
    14. E. D. Tidwell, E. K. Plyler, and W. S. Benedict, J. Opt. Soc. Am. 50, 1243 (1960).
    15. L. S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
    16. H. Finsterhölzl, J. G. Hochenbleicher, and G. Strey, J. Raman. Spectrosc. 6, 13 (1977).
    17. C. Amiot and G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
    18. S. A. Diddams et al., Phys. Rev.Lett. 84, 5102 (2000).
    19. T. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002).
    20. T. W. Hänsch, Rev. Mod. Phys.ics 78, 1297 (2006).
    21. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, Opt. Lett. 30, 997 (2005).
    22. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, Phys. Rev. A 80, 032518 (2009).
    23. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, Phys.Rev. Lett. 104, 110801 (2010).
    24. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, Opt. Express 19, 23878 (2011).
    25
    25. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Express 17, 9582 (2009).
    26. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Lett. 35, 3616 (2010).
    27. A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, Appl. Phys. B 109, 385 (2012).
    28. S. Borri et al., Opt. Lett. 37, 1011 (2012).
    29. D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, Opt. Express 19, 17520 (2011).
    30. A. Gambetta, D. Gatti, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, Appl. Phys. Lett. 99 (2011).
    31. P. Cancio et al., Appl. Phys. B 102, 255 (2011).
    32. S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, and P. De Natale, Opt. Express 16, 11637 (2008).
    33. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, Opt. Lett. 32, 988 (2007).
    34. I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, Opt. Express 21, 28877 (2013).
    35. I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, Mol. Phys. 111, 2041 (2013).
    36. A. Castrillo, A. Gambetta, D. Gatti, G. Galzerano, P. Laporta, M. Marangoni, and L. Gianfrani, Appl. Phys. B 110, 155 (2013).
    37. A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, Opt. Lett. 37, 4083 (2012).
    38. K. Knabe, P. A. Williams, F. R. Giorgetta, M. B. Radunsky, C. M. Armacost, S. Crivello, and N. R. Newbury, Opt. Express 21, 1020 (2013).
    39. C. C. Liao, Y. H. Lien, K. Y. Wu, Y. R. Lin, and J. T. Shy, Opt. Express 21, 9238 (2013).
    40. K. H. Casleton and S. G. Kukolich, J. Chem. Phys. 62, 2696 (1975).
    41. L. H. Scharpen, J. S. Muenter, and V. W. Laurie, J. Chem. Phys. 53, 2513 (1970).
    42. C. A. Burrus and W. Gordy, Phys. Rev. 101, 599 (1956).
    43. R. Pearson, T. Sullivan, and L. Frenkel, J.Mol. Spectrosc. 34, 440 (1970).
    44. W. J. Lafferty, E. K. Plyler, and A. G. Maki, J. Chem. Phys. 40, 224 (1964).
    45. B. A. Andreev, A. V. Burenin, E. N. Karyakin, A. F. Krupnov, and S. M. Shapin, J. Mol. Spectrosc. 62, 125 (1976).
    46. I. Morino, M. Fabian, H. Takeo, and K. M. T. Yamada, J. Mol. Spectrosc. 185, 142 (1997).
    47. B. J. Drouin and F. W. Maiwald, J. Mol. Spectrosc. 236, 260 (2006).
    26
    48. J. Lemaire, J. Houriez, J. Thibault, and B. Maillard, J. Phys. France 32, 35 (1971).
    49. J. S. Wells, D. A. Jennings, A. Hinz, J. S. Murray, and A. G. Maki, J. Opt. Soc. Am. B 2, 857 (1985).
    50. B. G. Whitford, K. J. Siemsen, H. D. Riccius, and G. R. Hanes, Opt. Commun. 14, 70 (1975).
    51. M. Tachikawa, K. M. Evenson, L. R. Zink, and A. G. Maki, IEEE J. Quantum Electron. 32, 1732 (1996).
    52. V.-M. Horneman, J. Mol. Spectrosc. 241, 45 (2007).
    53. T. Oka, Chem. Rev. 113, 8738 (2013).
    54. H. I. Ewen and E. M. Purcell, Nature 168, 356 (1951).
    55. C. A. Muller and J. H. Oort, Nature 168, 357 (1951).
    56. G. R. Carruthers, Astrophys. J. 161, L81 (1970).
    57. T. R. Geballe and T. Oka, Nature 384, 334 (1996).
    58. J. J. Thomson, Philos. Mag. 24, 209 (1912).
    59. B. J. McCall, Ph.D desstertation, the university of Chicago, 2001.
    60. J. L. Gotterfried, Ph.D desstertation, the university of Chicago, 2005.
    61. C. M. Lindsay and B. J. McCall, J. Mol. Spectrosc. 210, 60 (2001).
    62. T. Amano, Astrophys. J. 329, L121 (1988).
    63. D. Uy, M. Cordonnier, and T. Oka, Phys. Rev. Lett.78, 3844 (1997).
    64. C. M. Lindsay, E. T. White, and T. Oka, Chem. Phys. Lett. 328, 129 (2000).
    65. N. Bohr, Nobelinstitut 5, 1 (1919).
    66. H. Kragh, Astron. & Geophys. 51, 6.25 (2010).
    67. J. O. Hirschfelder, J. Chem Phys. 6, 795 (1938).
    68. C. A. Coulson, Proc. Cambridge Philos. Soc. 31, 244 (1935).
    69. G. D. Carney and R. N. Porter, J. Chem. Phys. 60, 4251 (1974).
    70. G. D. Carney and R. N. Porter, J. Chem. Phys. 65, 3547 (1976).
    71. G. D. Carney and R. N. Porter, Chem. Phys. Lett. 50, 327 (1977).
    72. G. D. Carney and R. N. Porter, Phys. Rev. Lett. 45, 537 (1980).
    73. G. D. Carney, Mol. Phys. 39, 923 (1980).
    74. R. Jaquet, W. Cencek, W. Kutzelnigg, and J. Rychlewski, J. Chem. Phys. 108, 2837 (1998).
    75. O. L. Polyansky and J. Tennyson, J. Chem. Phys. 110, 5056 (1999).
    76. J. K. G. Watson, Chem. Phys. 190, 291 (1995).
    77. T. Oka, Phys. Rev. Lett. 45, 531 (1980).
    78. J. K. G. Watson, S. C. Foster, A. R. W. McKellar, P. Bernath, T. Amano, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J Phys 62, 1875 (1984).
    79. A. R. W. McKellar and J. K. G. Watson, J. Mol. Spectrosc. 191, 215 (1998).
    80. T. Nakanaga, F. Ito, K. Sugawara, H. Takeo, and C. Matsumura, Chem. Phys. Lett. 169,
    27
    269 (1990).
    81. M. Fukushima, M.-C. Chan, Y. Xu, A. Taleb-Bendiab, and T. Amano, Chem. Phys. Lett. 230, 561 (1994).
    82. X. Yunjie, M. Fukushima, T. Amano, and A. R. W. McKellar, Chem. Phys. Lett. 242, 126 (1995).
    83. S. Davis, M. Fárnı́k, D. Uy, and D. J. Nesbitt, Chem. Phys. Lett. 344, 23 (2001).
    84. H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett.109, 263002 (2012).
    85. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, II, and B. J. McCall, Chem. Phys. Lett. 551, 1 (2012).
    86. K.-Y. Wu, Y.-H. Lien, C.-C. Liao, Y.-R. Lin, and J.-T. Shy, Phys. Rev. A 88, 032507 (2013).
    87. T. Oka, Philos. Trans. R. Soc. London. Ser. A, Mathematical and Physical Sciences 303, 543 (1981).
    88. M. G. Bawendi, B. D. Rehfuss, and T. Oka, J. Chem. Phys. 93, 6200 (1990).
    89. L.-W. Xu, M. Rösslein, C. M. Gabrys, and T. Oka, J. Mol. Spectrosc. 153, 726 (1992).
    90. D. Uy, C. M. Gabrys, M. F. Jagod, and T. Oka, J. Chem. Phys. 100, 6267 (1994).
    91. W. A. Majewski, A. R. W. McKellar, D. Sadovskii, and J. K. G. Watson, Can. J. of Phys. 72, 1016 (1994).
    92. C. M. Lindsay, R. M. Rade, and T. Oka, J. Mol. Spectrosc. 210, 51 (2001).
    93. J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, J. Chem. Phys. 139 (2013).
    Chapter 3
    References
    1. F. Tittel, D. Richter, and A. Fried, in Top Appl Phys, edited by I. Sorokina, and K. Vodopyanov (Springer Berlin Heidelberg, 2003), p. 458.
    2. R. W. Boyd, Nonlinear Optics (Second Edition) (Academic Press, San Diego, 2003).
    3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys.Rev.127, 1918 (1962).
    4. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
    5. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, Appl. Phys. B 86, 111 (2007).
    6. http://it.iucr.org/Da/ch1o7v0001/sec1o7o3/.
    7. http://www.coherent.com/products/index.cfm?846/MBR-Ring-Series.
    8. http://www.ipgphotonics.com/products_1micron_amp_linear.htm.
    9. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    10. C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knoeckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, J. Opt. Soc. Am. B 27, 1208 (2010).
    Chapter 4
    1. T. J. Quinn, Metrologia 40, 103 (2003).
    2. C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, J. Opt. Soc. Am. B 27, 1208 (2010).
    3. H. M. Fang, S. C. Wang, and J. T. Shy, Opt. Commun. 257, 76 (2006).
    4. L. S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).
    5. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2003).
    6. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. Hollberg, Opt. Lett. 25, 350 (2000).
    7. K. Knabe, P. A. Williams, F. R. Giorgetta, M. B. Radunsky, C. M. Armacost, S. Crivello, and N. R. Newbury, Opt. Express 21, 1020 (2013).
    8. B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
    9. H. Gupta, B. J. Drouin, and J. C. Pearson, Astro. phys. J. Lett. 751, L38 (2012).
    10. M. J. Dick, B. J. Drouin, T. J. Crawford, and J. C. Pearson, J. Quant. Spectrosc. Radiat. Transfer 110, 628 (2009).
    11. M. Tachikawa, K. M. Evenson, L. R. Zink, and A. G. Maki, IEEE J. Quantum Electron. 32, 1732 (1996).
    12. V.-M. Horneman, J. Mol. Spectrosc. 241, 45 (2007).
    13. K. H. Casleton and S. G. Kukolich, J. Chem. Phys. 62, 2696 (1975).
    14. L. H. Scharpen, J. S. Muenter, and V. W. Laurie, J. Chem. Phys. 53, 2513 (1970).
    15. C. A. Burrus and W. Gordy, Phys. Rev. 101, 599 (1956).
    16. R. Pearson, T. Sullivan, and L. Frenkel, J. Mol. Spectrosc. 34, 440 (1970).
    17. W. J. Lafferty, E. K. Plyler, and A. G. Maki, J. Chem. Phys. 40, 224 (1964).
    18. B. A. Andreev, A. V. Burenin, E. N. Karyakin, A. F. Krupnov, and S. M. Shapin, J. Mol. Spectrosc. 62, 125 (1976).
    19. I. Morino, M. Fabian, H. Takeo, and K. M. T. Yamada, J. Mol. Spectrosc. 185, 142 (1997).
    20. B. J. Drouin and F. W. Maiwald, J. Mol. Spectrosc. 236, 260 (2006).
    21. I. Morino, K. M. T. Yamada, and A. G. Maki, J. Mol. Spectrosc. 196, 131 (1999).
    22. J. Lemaire, J. Houriez, J. Thibault, and B. Maillard, J. Phys. France 32, 35 (1971).
    23. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
    24. C. Amiot and G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
    25. R. A. Toth, J. Opt. Soc. Am. B 4, 357 (1987).
    26. M. Bogey, J. Phys.B 8, 1934 (1975).
    27. M. Bogey, C. Demuynck, and J. L. Destombes, Mol. Phys. 43, 1043 (1981).
    28. L. Valerio, W. Adam, J. D. Brian, and C. P. John, Astro. J. 662, 771 (2007).
    Chapter 5
    1. S. K. Stephenson and R. J. Saykally, Chem. Rev. 105, 3220 (2005).
    2. C. S. Gudeman and R. J. Saykally, Annu. Rev. Phys. Chem. 35, 387 (1984).
    3. J. C. Owrutsky, N. H. Rosenbaum, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 83, 5338 (1985).
    4. J. Owrutsky, N. Rosenbaum, L. Tack, M. Gruebele, M. Polak, and R. J. Saykally, Phil. Trans. R. Soc. A 324, 97 (1988).
    5. J. W. Farley, J. Chem. Phys. 95, 5590 (1991).
    6. J. K. G. Watson, S. C. Foster, A. R. W. McKellar, P. Bernath, T. Amano, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J. Phys. 62, 1875 (1984).
    7. K.-Y. Wu, Y.-H. Lien, C.-C. Liao, Y.-R. Lin, and J.-T. Shy, Phys. Rev. A 88, 032507 (2013).
    8. H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys.Rev. Lett. 109, 263002 (2012).
    9. J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, The J. Chem. Phys. 139 (2013).
    Chapter 6
    1. K. Knabe, P. A. Williams, F. R. Giorgetta, M. B. Radunsky, C. M. Armacost, S. Crivello, and N. R. Newbury, Opt. Express 21, 1020 (2013).
    2. J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, The J. Chem. Phys.139 164201-1 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE