簡易檢索 / 詳目顯示

研究生: 喬康豪
Chiao, Kang-Hao
論文名稱: GOTHIC程式氫氣再結合裝置計算模試驗證分析
The Verification of GOTHIC Code in Hydrogen Recombiner mode
指導教授: 白寶實
Pei, Bau-Shei
曾永信
Tsenga, Yung-Shin
口試委員: 洪祖全
HUNG, TSU-CHUAN
苑穎瑞
YU, YING-JUI
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 氫氣自燃氫氣再結合裝置
外文關鍵詞: GOTHIC, hydrogen explosion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2011年3月11日,日本福島第一核能電廠因強震及海嘯,導致嚴重事故
    發生,在失去移熱能力後,爐心水位下降致使反應器爐心裸露。由於爐心裸露,燃
    料護套和水蒸氣產生劇烈的鋯水反應而釋氫,氫氣濃度在反應器廠房中累積過高而
    引發氫氣自燃,導致二次圍阻體頂部崩解,輻射物質飄散外界。若能設置氫氧再結
    合裝置於圍阻體內部,當氫氣產生時可藉此裝置加以消耗,避免氫氣自燃的危險。
    本研究先對於GOTHIC之氫氣再結合裝置計算模式做一驗證,採用Atomic Energy
    of Canada Limited (AECL)及Korea Nuclear Technology (KNT)所設計之氫氣再結合
    裝置參數,並找尋相關實驗文獻做比對,分析結果顯示GOTHIC在氫氣消耗速率
    之計算上較實驗數據來的保守。本研究採用GOTHIC圍阻體分析程式建立核能二
    廠MARK-III型圍阻體之分析輸入模式,並採用MAAP5程式在電廠全黑事故下,
    假設所有補水系統完全失效,在事故發生後不進行任何補水動作,進行氫氣擴散濃
    度分析評估,並將氫氣再結合裝置設置於廠房中,探討氫氣再結合裝置數量及擺放
    位置可使氫氣濃度抑制在安全限值之內。 在全黑事故中,採用AECL所設計之氫
    氣再結合裝置進行分析,並針對氫氣再結合裝置擺放之位置、高度、數量及樓板孔
    係度進行探討,尋找一優化之擺放策略,在氫氣再結合裝置總數為320台之情況
    下,在嘗試均勻設置、圍繞圍阻體外側牆、圍繞圍阻體內側牆等3種不同設置
    方式後,均勻設置、圍繞圍阻體外側牆這兩種方式可將氫氣濃度控制在4%以
    下,在考慮了孔係度為0.5較為保守之條件下,經測試氫氣再結合裝置總數為
    352台,可以將圍阻體底部氫氣濃度成功抑制在4%以下,免除氫氣自燃之現象
    發生。結果觀察到氫氣濃度較高的位置有於平面上下區域集中的趨勢,因此針
    對濃度較高的位置加強氫氣再結合的裝置,期望能得到較佳的效果,但結果顯
    示並未能如預期有效的降低該取區域之氫氣濃度,所以藉由模擬程式分析出氫
    氣濃度較高之位置,再對那些區域增加氫氣再結合裝置之數量,未必會達到較
    佳之效果,在三種測試中顯示均勻設置可以得到一較佳的效果。


    On 11th March 2011, the Fukushima nuclear power plan in Janpan was destroyed by Earthquake and tsunami, then the severe accident happened. The core water level decreased caused by loss of heat sink and then the core uncovered. Due to the core uncovered and damaged, steam interacted with the exposed fuel cladding, and large amount of hydrogen was produced. High concentration of hydrogen gathering inside the top of reactor building induced a horrible explosion and caused the secondary containment broken. The containment integrity could not be maintained thereafter, and the radioactive substances leaked to outside environment. If the hydrogen recombiner can be set in the containment previously, it will depleting the concentration of hydrogen to avoid hydrogen combustion.
      In this study, we verification of GOTHIC Code in hydrogen recombiner mode by
    compare analysis result with the experiment of hydrogen recombiner designed by
    AECL and KNT, the result show that the calculation in hydrogen depletion rate in
    GOTHIC is conservative. Generation of Thermal Hydraulic Information for
    Containment (GOTHIC) code is used as analyzed tool to perform the analysis of the
    behavior of hydrogen diffusion and migration in MARK-III containment of Kuosheng
    nuclear power plant. One of the boundary condition used in this simulation, the
    production rate of hydrogen, was generated from the calculation of Modular Accident
    Analysis Program 5 (MAAP5) code under station blackout event of Kuosheng nuclear
    power plant under the same condition as Fukushima accident. Finding out whether the
    concentration of hydrogen in each floor of containment reaches the safety limit or not.
    In the SBO accident simulation, we use the recombiner designed by AECL in GOTHIC code,To find a suitable configuration of hydrogen recombiner in
    containment, the result show that the total number of the hydrogen recombiner is 320,
    uniform configuration and around the outside wall of containment, the hydrogen
    concentration in second floor of the reactor building is below the 4%. Porosity equal
    0.5 is a conservative setting ,then the number of 352 hydrogen recombiner is required.
    , we obser that the hydrogen concentration is higher in top and down plane, so we added the amount of hydrogen recombiner in these region except a lower hydrogen concentration, but this configuration is not a good way to depleted hydrogen. The GOTHIC code predicts that the number of hydrogen recombiner is 352 the hydrogen concentration can be controlled under 4%, and the uniform configuration is a better way to set in the containment.

    摘要 i ABSTRACT iii 致謝 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 論文架構 6 第二章 GOTHIC程式介紹 8 第三章 GOTHIC程式氫氣再結合裝置分析驗證 16 3.1 氫氣再結合裝置設計原理與目的 16 3.2 AECL 氫氣再結合裝置實驗驗證 17 3.2.1 AECL PAR設計參數 17 3.2.2 AECL PAR實驗設備描述 18 3.2.3 AECL PAR驗證結果分析 19 3.3 KNT 氫氣再結合裝置實驗驗證 21 3.3.1 KNT PAR設計參數 21 3.3.2 KNT PAR實驗設備描述 23 3.3.3 KNT驗證結果分析 25 第四章_MARK-III型圍阻體簡介 26 4.1 MARK-III型圍阻體系統 26 4.2 MARK-III型圍阻體空間結構 30 第五章 GOTHIC程式分析模式建立 32 5.1 核二廠全黑事模型架設 32 5.2 氫氣再結合裝置模型設置 35 第六章 結果與討論 45 6.1全黑事故分析結果 45 6.2全黑事故樓板孔隙度分析 47 6.3氫氣再結合裝置分析結果 48 第七章 結論與建議 70

    1. Electric Power Research Institute, GOTHIC: Containment Analysis Package User Manual , version 7.2a, NAI 8907-02 Rev.17, January 2006.
    2. Electric Power Research Institute, GOTHIC: Containment Analysis Package Technical Manual , version 7.2a, NAI 8907-06 Rev.16, January 2006.
    3. Electric Power Research Institute, GOTHIC: Containment Analysis Package Qualification Report , version 7.2a, NAI 8907-09 Rev.9, January 2006.
    4. M. Krause, “Hydrogen Program at AECL ”, Hydrogen Program at AECL,2004.
    5. Jae-Won Parka,“Demonstrative testing of honeycomb passive autocatalytic recombiner for nuclear power plant ”,Nuclear Engineering and Design 2011,4280-4288.
    6. 沈紘毅,「核能一廠MARK-I型圍阻體氫氣擴散濃度GOTHIC程式分析模式建立」,國立清華大學核子工程與科學研究所,碩士論文,民國101年。
    7. 黃郁凱,「MARK-III型圍阻體中氫氣擴散及濃度分佈之GOTHIC程式分析」,國立清華大學核子工程與科學研究所,碩士論文,民國102年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE