研究生: |
陳榮哲 Chen, Rong-Jhe |
---|---|
論文名稱: |
仿肝組織重建之肝臟實驗室晶片之設計、開發與研究肝功能之提升 Design and Development of a Liver Labchip for Construction of Hepatic-Lobule Mimetic Tissues, and Study in Liver Function Enhancement |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 肝臟實驗室晶片 、介電泳 、工程肝臟組織 、細胞排列 |
外文關鍵詞: | liver labchip, dielectrophoresis, engineered tissue, cell patterning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Conventional biomedical studies are carried out either in vivo or in vitro. In vivo research utilizing intact organisms can provide high resemblance to the real physiological conditions. However, the variations in experimental results are relatively high due to the high complication of organisms and the great diversity of entities. It is also difficult to observe the biological processes in whole organisms. On the other hand, in vitro research utilizing isolated cells can provide a purified environment and amplify the observed reactions in experiments. But it is unable to reflect the complex physiological responses found in vivo.
In this work, a liver labchip integrating a dielectrophoretic (DEP) cell patterning technique and a microfluidic system is developed for constructing an in vitro engineered liver tissue mimicking the base unit, hepatic lobule, of liver. The liver labchip is proposed not only to treat as a disease model to study hepatitis B, hepatitis C and liver cancer, but also to serve a platform for drug screening. DEP forces are utilized as the cell-patterning mechanism to manipulate heterogeneous cells for mimicking the inherent hepatic morphology and increasing the cell-cell interaction. The microfluidic system is designed for not only long-term culture of the engineered liver tissues in triplicate condition but also well control of the culture environment in vitro to mimic a real condition in vivo. The three important features of the proposed liver labchip are: (1) The designs of the microfluidic system which provide consistent flow velocity, consistent cell density, and uniform cell distribution. (2) About five hundred thousand and three hundred thousand of hepatocytes and fibroblasts are alternately organized into an array of multiple radial patterns to from a 92 mm2 precise lobule-mimetic engineered liver tissue by flourishing the DEP ability. (3) The experimental results reveal that the liver-specific functions such as, albumin secretion and P450-1A1 enzyme activity of DEP-engineered liver tissue show 32.49% and 68.41% of enhancement when compared with non-patterned liver cells, respectively.
This research results are quite remarkable and foresighted and we are the first in the world to demonstrate the large-area parallel manipulation of several hundred thousands of cells for constructing an engineered liver tissue. By the proposed liver labchip, the engineered liver tissue can serve as an excellent model for the investigation of liver physiology and pathophysiology. Meanwhile, this liver labchip is able to extract the bioinformation from the engineered tissues in response to various drugs, which will be useful for biomedical applications such as drug screening. Finally, the present gap between in vivo and in vitro studies can be bridged via this liver labchip.
系統晶片,以仿肝臟基本單元肝小葉為目標來體外重建肝組織,藉以當作B肝、C肝、癌症病理及藥物篩選的平台。晶片中利用介電泳力當作細胞排列的機制,以操控不同種類的細胞,建構仿真實肝組織的型態,以促進細胞與細胞的相互作用。另外,設計微流體系統,得以進行生醫檢測採用的三重覆實驗,並長期培養重建的肝組織與控制體外培養環境以近似真實體內環境。所提出的肝臟實驗室晶片展現了三個重要的特色:(1)設計的微流體系統能夠提供一致的流速、一致的細胞密度與均勻的細胞分佈;(2)藉由介電泳的能力,大約五十萬個肝細胞與三十萬個纖維母細胞能夠先後的排列成多重放射狀圖案陣列並形成約九十六豪米面積之仿肝小葉肝組織;(3)實驗結果顯示,對於介電泳排列的工程肝組織其特有的白蛋白分泌與P450-1A1酵素活性表現,各別有32.49% 與 68.41%的顯著提升。
本研究結果相當具前瞻與獨特性,展現世界上第一個有能力大面積平行的操控幾十萬顆細胞,並將異種細胞仿肝小葉結構排列,以體外重建工程的肝組織。藉由所提出的肝臟晶片,其工程肝臟組織可以當成研究肝臟的生理學與病理生理學模型。同時肝臟晶片亦能夠利用工程肝臟組織在不同的藥物情況下反映不同的結果,而有效的應用在藥物篩選。且現今體外與體內的研究亦能夠利用所提出的肝臟晶片而有所聯接。
[1]
R. Langer and J. P. Vacanti, Tissue engineering, Science, 1993, 260, 920-926.
[2]
E. Holy, M.S. Shoichet and J.E. Davies, Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period, J. Biomed. Mater. Res., Part A, 2000, 51(3), 376-382.
[3]
D. Wendt, A. Marsano, M. Heberer and I. Martin, Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity, Biotechnol. Bioeng., 2003, 84(2), 205-214.
[4]
W.T. Godbey, S.B. Hindy, M.E. Sherman and A. Atala, A novel use of centrifugal force for cell seeding into porous scaffold, Biomaterials, 2004, 25(14), 2799-2805.
[5]
K. Shimizu, A. Lto and H. Honda, Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles, J. Biomed. Mater. Res., Part B, 2005, 77, 265-272.
[6]
L. G. Griffith, and G. Naughton, Tissue engineering--current challenges and expanding opportunities, Science, 2002, 295(5557), 1009-1014.
[7]
L. G. Griffith and M. A. Swartz, Capturing complex 3D tissue physiology in vitro, Nat. Rev. Mol. Cell Biol. , 2006, 7(3), 211-224.
[8]
Y. Nahmias, F. Berthiaume and M. L. Yarmush, Integration of technologies for hepatic tissue engineering, Adv. Biochem. Eng. Biotechnol., 2007, 103, 309-329.
[9]
J. R. Fuchs, B. A. Nasseri, and J. P. Vacanti, Tissue engineering: a 21st century solution to surgical reconstruction, Ann. Thorac. Surg., 2001, 72, 577-591.
[10]
J. Tsiaoussis, P. N. Newsome, L. J. Nelson, P. C. Hayes and J. N. Plevris, Which Hepatocyte Will it be? Hepatocyte choice for bioartifical liver support systems, Liver Tansplantation, 2001, 7, 2-10.
[11]
K. Bhadriraju and C. S. Chen, Engineering cellular microenvironments to improve cell-based drug testing, Drug Discovery Today, 2002, 7, 11, 612-620.
[12]
D. Falconnet, G. Csucs, H. Michelle and M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays, Biomaterial, 2006, 27, 3044-3063.
[13]
H. Andersson and A. V. D. Berg, Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities, Lab Chip, 2004, 4, 98–103.
[14]
K. Ali, R. Langer, Borenstein and J. P. Vacanti, Microscale technologies for tissue engineering and biology, Proc. Natl. Acad. Sci., 2006, 103, 2480-2487.
[15]
S. Bathia, U. Balis, M. Yarmush and M. Toner, Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions, Biotechnol. Prog., 1998, 14, 378–387.
[16]
S.N. Bhatia, U. J. Balis, M. L. Yarmush and M. Toner, Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells, FASEB J., 1999, 13, 1883–1900.
[17]
S. R. Khetani, G. Szulgit, J. A. Del Rio, C. Barlow and S.N. Bhatia, Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling, Hepatology, 2004, 40, 545–554.
[18]
S. R. Khetani and S. N. Bhatia, Microscale culture of human liver cells for drug development, Nature Biotechnology, 2007, 26, 1, 120-126.
[19]
Petra S. Dittrich and Andreas Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery, 2006, 5, 210-218.
[20]
J. El-Ali, P.K. Sorger and K.F. Jensen, Cells on chips, Nature, 2006, 442(27), 403-411.
[21]
A. W. Chow, Lab-on-a-Chip: Opportunities for Chemical Engineering,” AIChE Journal, 2002, 48, 8, 1590-1595.
[22]
B. Lon, K.E. Healy and P.E. Hockberger, A versatile technique for patterning biomolecules onto glass coverslips, J. Neurosci. Methods., 1993, 50, 3, 385-397.
[23]
D. Falconnet, G. Csucs, H. M. Grandin and M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays, Biomaterials, 2006, 27, 3044-3063.
[24]
S. N. Bhatia, M. Yarmusch and M. Toner, Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts, J. Biomed. Mater. Res., 1997, 34, 189-199.
[25]
S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci. Polymer Ed., 1998, 9, 1137-60
[26]
S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner, Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells, FASEB, 1999, 13, 1883-1900.
[27]
M. Mrksich, L.E. Dike, J. Tein, D.E. Ingber and G.M. Whitesides, Using Microcontact Printing to Pattern the Attachment of Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver, Exp. Cell. Res., 1997, 235, 305-313.
[28]
R.S. Kane, S. Takayama, E. Ostuni, D. Ingber and G. M. Whitesdes, Patterning proteins and cells using soft lithography, Biomaterials, 1999, 20, 2363-2376.
[29]
G. P. Lopez, M. W. Alberts, S. L. Schreiber, R. Carroll, E. Peralta, G. M. Whitesides, Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold, J. Am. Chem. Soc., 1993, 115, 5877-5578.
[30]
G. P. Lopez, H. A. Biebuyck, R. Härter, A. Kumar and G. M. Whitesides, Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy, J. Am. Chem. Soc., 1993, 115, 10774-10781.
[31]
C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Geometric control of cell life and death, Science, 1997, 276, 1425-1428.
[32]
C. S. Chen, M. Mrksich, S. Huang, G. M. whitesides, and D. E. Ingber, Micropatterned surfaces for control of cell shape, position, and function, Biotechnol. Prog., 1998, 14, 356-363.
[33]
E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks, Science, 1997, 276(5313), 779-781.
[34]
J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping, Anal. Chem., 2000, 72, 3158-3164.
[35]
D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G.M. Whitesides, Patterned deposition of cells and protein onto surfaces by three-dimensional microfluidic systems, PNAS, 2000, 97(6), 2408-2413.
[36]
S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M. Whitesides, Laminar flow: Subcellular positioning of small molecules, Nature, 2001, 411, 1016.
[37]
W. C. Wilson and T. Boland, Cell and organ printing 1: protein and cell printers, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2003, 272A, 491-496.
[38]
F. Turcu, K. Tratsk-Nitz, S. Thanos, W. Schuhmann and P. Hieduschka, Ink-jet printing for micropattern generation of laminin for neuronal adhesion, J. Neurosci. Methods, 2003, 131, 141-148.
[39]
A. Ashkin, J. M. Dziedzic and T. Yamane, Optical trapping and manipulation of single cells using infrared-laser beams, Nature, 1987, 330, 769-771.
[40]
T. Matsue, N. Matsumoto and I. Uchida, Rapid micropatterning of living cells by repulsive dielectrophoretic force, Electrochimica Acta, 1997, 42, 20, 3251-3256.
[41]
N. Mittal, A. Rosenthal and J. Voldman, nDEP microwells for single-cell patterning in physiological medium, Lab chip, 2007, 7, 1146-1153.
[42]
D. S. Gray, J. L. Tan, J. Voldman and C. S. Chen, Dielectrophoretic registration of living cells to a microelectrode array, Biosens. Bioelectron., 2004, 19, 771-780.
[43]
D. R. Albrecht, V. L. Tsang, R. L. Sah and S. N. Bhatia, Photoand electropatterning of hydrogel-encapsulated living cell array, Lab Chip, 2005, 5, 111-118.
[44]
C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang and C. H. Liu, Rapid heterogenerous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap, Lab chip, 2006, 6, 724-734
[45]
H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
[46]
M. P. Hughes, Nanoelectromechanics in Enginnering and Biology, CRC Press, Boca Raton, FL, 2003.
[47]
T. B. Jone, Electromechanics of particles, Cambridge University Press, 1995.
[48]
P. R. Gascoyne and J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, 2002, 23, 13, 1973-83.
[49]
J. Voldman, M. L. Gray, M. Toner and M. A. Schmidt, A microfabrication-based dynamic array cytometer, Anal. Chem., 2002, 74, 16, 3984-90.
[50]
F. M. White, Viscous Fluid Flow, McGraw-Hill Companies, Inc, Boston, 2006.
[51]
H. Yang, J. Acker, A. Chen and L. McGann, In situ assessment of cell viability, Cell Transplant, 1998, 7(5), 443–51.
[52]
M. D. Burke and R. T. Mayer, Ethoxyresorufin: Direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene, Drug Metab. Dispos., 1974, 2, 583–588.
[53]
U. Zimmermann, Electromanipulation of Cells, CRC Press, London, 1996.
[54]
U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hämel and V. Sukhorukov, Electromanipulation of mammalian cells: fundamentals and application, IEEE T. Plasma Sci., 2000, 28, 1, 72-82.
[55]
P. R. C. Gascoyne and J. V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, P. IEEE, 2004, 92(1), 22-40.