簡易檢索 / 詳目顯示

研究生: 何孟翰
Meng-Han Ho
論文名稱: CMOS-MEMS神經感測探針之設計與製作
Design and Fabrication of CMOS-MEMS Neural Recording Probes
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 互補氏金氧半微機電製程感測放大器神經紀錄探針深反應離子蝕刻
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    為了更了解中樞神經系統,研究人員必須透過特殊之感測儀器來得到關鍵的神經訊號。近幾年來,這類神經感測探針的研發大多利用薄膜沉積與IC產業技術,藉由成熟的IC產業技術,神經感測探針的效能與可靠度可以大大的提升。但以往的設計大多需要特殊的製程配合,這意味著較高的製作成本。因此我們將設計與製成一新穎的神經感測探針以改進所述之缺點。
    在此計畫中,我們將介紹一以CMOS微加工技術所製成之神經感測探針的設計與特色。此探針晶片的製作將利用標準的台積電0.35□m 2P4M CMOS製程,並配合適當的die level後製程技術。透過此CMOS-MEMS神經感測探針,我們可以進行細胞外神經感測,並可量測到神經訊號之action potential。因此,利用標準製程加上適當的die-level後製作,並且整合感測電路與探針結構將是此CMOS-MEMS神經感測探針之特色。


    Abstract
    In order to understand the central nervous system more, researchers must rely on some kinds of special recording instrument to record the neural signal we want. Recently, most of neural recording probes are fabricated by using thin-film and integrated circuit(IC) technology. Because of the maturity of IC technology, the performance of neural recording probe is more reliable and accurate. But they almost must use the special process to support and that means the higher production cost. In this article, we design a novel die-level fabrication of neural recording probes to improve drawbacks of the past probes.
    In this project, we present the design and characterization of a CMOS micromachined neural recording probe. The fabrication uses a standard TSMC 0.35-□m 2P4M CMOS process followed by post-CMOS micromachined steps performed at the die level. We can do the extracellular recording through our CMOS-MEMS neural recording probe and measure the electrical signal like the action potential. Therefore, the key feature of our approach is the post-CMOS process of the die level to fabricate the microstructure of neural probe and integrate the sensing circuit with microprobes.

    第一章. 序論…………………………………………………………...1 1.1微機電系統工程…………………………………………...1 1.2神經感測探針(neural recording probes)…………………..3 1.3文獻回顧…………………………………………………...4 1.4研究目標與論文概要……………………………………...9 第二章. CMOS-MEMS神經感測探針整體架構……………………11 2.1 CMOS-MEMS神經感測探針概述……………………...11 2.2感測電路之設計與模擬…………………………………13 2.2.1 Voltage buffer電路架構……………………………14 2.2.2感測電極之直流位準漂移問題……………………17 2.2.3電路模擬與layout………………………………20 2.3探針結構製程設計與模擬……………………………….24 2.3.1探針結構之後製程設計…………………………25 2.3.2感測電極之後製程設計……………………………30 2.3.3結構之應力模擬與晶片整體layout…………….31 第三章. 探針結構製作與後製程理…………………………………35 3.1晶片背面silicon substrate蝕刻……………………35 3.2晶片正面silicon dioxide蝕刻………………………38 3.3晶片正面silicon substrate蝕刻…………………………..42 3.4晶片封裝與整體Parylene沉積…………………………..45 3.5感測電極之後製程測試………………………………47 第四章. 實驗量測結果……………………………………………49 4.1感測電路量測……………………………………………49 4.2神經探針晶片基本電性測試……………………………53 4.3生物體神經訊號量測(In-vivo recordings)………56 第五章. 結論………………………………………………………61

    [1] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS – present and future,”The 15th IEEE International Conference on Micro Electro Mechanical System, pp.459-466,2002.
    [2] H. Xie and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,”Tech. Digest 13th IEEE Int. Conf. Micro Electro Mechanical System (MEMS 2000), Miyazaki, Japan, 2000.
    [3] K. D. Wise, J. B. Angell, and A. Starr, “An integrated-circuit
    approach to extracellular microelectrodes,”IEEE Transactions
    on Biomedical Engineering, Vol. 17,No 3, pp. 238-247,Jul. 1970.
    [4] K. D. Wise and K. Najafi,“A micromachined integrated sensor
    withon-chip self-test capability,”Technical Digest, IEEE
    Solid-State Sensor Conference, pp.12-16,June 1984.
    [5] G. A. May, S. A. Shamma, and R. L. White, “A tantalum-on-sapphire microelectrode array,” IEEE Transactions on Biomedical Engineering, Vol. 26,No 12, pp 1932-1939,Dec. 1979.
    [6] K. Najafi and K. D. Wise, “An implantable multielectrode array with on-chip signal processing,”IEEE Journal of Solid-State Circuits,Vol.26,No.3,pp.433-443,Mar 1992.
    [7] S. J. Tanghe and K. D. Wise,“A 16-channel CMOS neural stimulating array,”IEEE Journal of Solid-State Circuits,Vol.27,pp.1819-1825,Dec. 1990.
    [8] C. Kim and K. D. Wise, “A 64-site multishank CMOS low-profile neural stimulating probe,” IEEE Journal of Solid-State Circuits,Vol.31,pp.1230-1238,Sept. 1996.
    [9] J. M. R. Delgado, “Electrodes for extracelluar recording and stimulation,”in Physical Techniques in Biological Research, Vol. 5, Ch.2,New York:Academic, 1964
    [10] K. D. Wise, A Multichannel Microprobe for Biopotential Recording, Ph.D.Dissertation, Department of Electrical Engineering, Stanford University, May 1969.
    [11] S. L. BeMent, K. D. Wise, D. J. Anderson, K. Najafi, and K. L. Drake, “Solid-state electrodes for multichannel multiplexed intracortical neural recording,”IEEE Transactions on Biomedical Engineering, Vol. 33,No. 2,pp. 230-241,Feb. 1986.
    [12] D. H. Hubel, “Tungsten microelectrode for recording from single-units,”Science, Vol. 125, pp.549-550, 1957.
    [13] D. W. Kennard, “Glass microcapillary electrodes used for measuring potential in living tissue,”in Electronic Apparatus for Biological Research, Ch. 35, New York:Academic Press, 1958.
    [14] D. A. Robinson, “The electrical properties of metal microelectrodes,”Proceedings of the IEEE, Vol.56, No.6, PP. 1065-1071,June 1968.
    [15] O. F. Schanne, M. Lavallee, R. Laprade, and S. Gagne,“Electrical properties of glass microelectrodes,” Proceedings of the IEEE, Vol.56, No.6, PP. 1072-1082,June 1968.
    [16] J. Kruger and M. Bach, “Simultaneous recording with 30 microelectrodes in monkey visual cortex,”Experimental Brain Research, Vol. 41, pp. 191-194, 1981.
    [17] J. Kruger,“Simultaneous individual recordings from many cerebral neurons:Techniques and results,”Reviews of Physiology, Biochemistry, and Pharmacology, Vol.98, pp. 177-233, 1983.
    [18] R. S. Pickard,“A review of printed circuit microelectrodes and their production,”Journal of Neuroscience Methods, l, pp. 301-318, 1979.
    [19] R. S. Pickard,“Printed circuit microelectrodes,”Trends in Neurosciences, Vol. 2, pp. 259-261, Oct. 1979.
    [20] K. Najafi,“Solid-state microsensors for cortical nerve recording,”IEEE Engineering in Medical and Biology, pp. 375-387, June/July 1994.
    [21] H. D. Mercer and R. L. White,“Photolithographic Fabrication and Physiological Performance of Microelectrode Arrays for Neural Stimulation,” IEEE Transactions on Biomedical Engineering, Vol.25, No. 6, pp. 495-500, Nov. 1978.
    [22] K. James, T. Whitehurst, G. Kovacs, and R. A. Normann, “The Use of Low Stress Silicon Nitride as a Biocompitable Insulator for Neuroprosthetic Applications, ”Annals of Biomedical Engineering, Vol. 23, Oct. 1995.

    [23] E. M. Schmidt, J. S. McIntosh, and M. Bak,“Long-Term Implants for Parylene-C coated microelectrodes,”Medical & Biological Engineering & Computing, Vol. 26, pp. 96-101, 1988.
    [24] R. S. Packard, A. J. Collins, P. L. Joseph, and R. C. Hicks,“Flexible Printed-Circuit Probe for Electrophysiology” Medical & Biological Engineering & Computing, Vol. 17, pp. 261-267, 1979.
    [25] G. E. Loeb, W. B. Marks, and P. G. Beatty,“Analysis and Microelectronic Design of Tubular Electrode Arrays Intended for Chronic, Multiple Single-Unit Recording from Captured Nerve Fibers,” Medical & Biological Engineering & Computing, Vol. 15, pp. 195-201, 1977.
    [26] K. D. Wise,“Silicon microsystems for neuroscience and neural prostheses”IEEE Engineering medicine and biology magazine, Vol. 24, pp. 22-29, 2005.
    [27] J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, Jr.,“A multichannel neural probe for selective chemical delivery at the cellular level,”IEEE Transactions on Biomedical Engineering, Vol. 44,No. 8, pp. 760-769, Aug. 1997.
    [28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Harcourt Brace Jovanovich, Inc., 1987.
    [29] M. D. Gingerich and K. D. Wise,“An active microelectrode array for multipoint stimulation and recording in central nervous system,”in Digest Int. Conf. on Solid-State Sensors and Actuators, pp.280-283, 1999.
    [30] J. Ji and K. D. Wise,“An Implantable CMOS Circuit Interface for Multiplexed Microelectrode Recording Arrays,”IEEE Journal of Solid-State Circuits, Vol. 26, No. 3, pp. 433-443, Mar 1992.
    [31] K. Takahashi and T. Matsuo,“Integration of multimicroelectrode and interface circuits by silicon planar and three-dimensional fabrication technology,”Sensor and Actuators, Vol. 5, pp.89-99, 1984.
    [32] G. T. A. Kovacs,“Mcroelectrode models for neural interfaces,”in Enabling Technologies for Cultured Neural Networks, D. A. Stenger and T. M. McKenna, Eds. San Diego: Academic Press, 1994, pp. 121-165.

    [33] Qing Bai,“A micromachined three-dimensional neural recording array with on-chip CMOS signal prpcessing circuitry,”Ph.D thesis, Michigan University, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE