研究生: |
陳俊宇 Chun-yu Chen |
---|---|
論文名稱: |
利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之分析 The Characterization of Textured Ruthenium Dioxide (RuO2) Thin Films Prepared with Reactive RF Magnetron Sputtering |
指導教授: |
甘炯耀
Jon-yiew Gan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 二氧化釕 、射頻磁控濺鍍 、X光光電子能譜儀 |
外文關鍵詞: | RuO2, RF Magnetron Sputtering, XPS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是著重在利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之指向控制與分析。
改變濺鍍時的參數,包括氧氣流量比例、基板溫度、工作壓力、瓦數及基板種類,並分別利用X光繞射儀、掃瞄式電子顯微鏡、掃瞄探針顯微鏡及X光光電子能譜儀觀察參數改變對二氧化釕薄膜之指向、表面型態、表面粗糙度及化學鍵結的影響。
在氧氣流量比例為30%、基板溫度為300℃的環境之下,我們可以製備出具(110)優選指向的二氧化釕薄膜。而具備(101)優選指向的二氧化釕薄膜則是在高氧流量比例(50%)及高基板溫度(450℃)的環境下成長。二氧化釕薄膜表面粗糙度會隨著氧氣流量比例和基板溫度的上升而增加。在低氧氣流量比時,薄膜表片化學鍵結主要是由金屬釕與二氧化釕所組成。隨著氧氣的流量比增加,三氧化釕的鍵結便逐漸形成,而且比例會隨著氧氣流量比例與基板溫度的上升而增加。
將基板種類由二氧化矽改成釕金屬/二氧化矽基板及白金/氧化鎂單晶基板,則二氧化釕薄膜呈現(200)優選指向,不受氧氣流量比、基板溫度及表面化學鍵結的影響。
The research is concentrated in the orientation control and characterization of ruthenium dioxide (RuO2) thin films deposited by RF magnetron sputtering.
Changing sputtering parameters, including O2 flow ratio, substrate temperature, RF power density, and substrate type, is investigated. And the effects of sputtering parameters on the orientation, surface morphology, surface roughness, and chemical bonding of RuO2 thin films are characterized by XRD, SEM, SPM, and XPS respectively.
Under mediate O2 flow ratio (25%) and lower substrate temperature (300℃), we get the (110)-orientation preferred RuO2 films, and the (101)-orientation preferred films growth under high O2 flow ratio (50%) and high substrate temperature (450℃). The surface becomes rougher with the increase of O2 flow ratio and substrate temperature. The chemical bonding exhibits the coexistence of Ru and RuO2 under lower O2 flow ratio. As O2 flow ratio is raised, RuO3 is found in XPS spectra, and the ratio will increase with the O2 flow ratio and substrate temperature. Besides, by changing substrate as Ru or Pt/MgO, the RuO2 films will exhibit highly (200)-oriented films, no matter the O2 flow ratio, substrate temperature, and chemical bonding.
Chapter 1
[1] Y. M. Sun and J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, doctoral thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003)
[2] X. J. Zhang, S. T. Zhang, Y. F. Chen, Z. G. Liu, N. B. Ming, “Completely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp.719-725 (2003)
[3] C. P. Lin and J. Y. Gan, “摻雜釹(Nd)之鈦酸鉍(BIT)鐵電薄膜優選指向控制”, master thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003)
[4] B. H. Park, S. J. Hyun, S. D. Bu, and T. W. Noh, “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12”, Appl. Phys. Lett. Vol. 74, No. 13, pp. 1907-1909 (1999)
[5] B. H. Park, B.S. Kang, T. W. Noh, J. Lee, and W. Jo , “Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature, Vol. 401, pp. 682-684 (1999)
[6] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002)
Chapter 2
[1] K. Y. Shih and T. Y. Tseng, “ Properties and Fabrication of Reactively Magnetron Sputtered Ruthenium Dioxide Thin Films”, Master Thesis, Nation Chiao Tung University, Taiwan (1997)
[2] A. K. Goel, G.. Skorinko, and F. H. Pollak, “Optical Properties of Single-crystal Rutile RuO2 and IrO2”, Phys. Rev. B, Vol. 24, No. 12, pp. 7342-7350 (1981)
[3] Y. M. Sun, J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, Doctoral Thesis, National Tsing-Hua University, Taiwan (2003)
[4] M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc., Vol. 132, No. 11, pp 2677-2685 (1985)
[5] L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881 (1987)
[6] H. N. Al-Shareef, A. I. Kingon, X. Chen, K. B. Bellur, and O. Auciello, “Contribution of Electrodes and Microstructure to the Electrical Properties of Pb(Zr0.53Ti0.47)O3 Thin Film Capacitors”, J. Mater. Res., Vol. 9, pp. 2968-2975, No. 11 (1994)
[7] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002)
[8] T. Watanabe, T. Kojima, H. Uchida, I. Okada, and H. Funakubo, “Spontaneous Polarization of Neodymium-Substituted Bi4Ti3O12 Estimated from Epitaxially Grown Thin Films with in-Plane c-Axis Orientations”, Jpn. J. Appl. Phys., Vol. 43, No. 2B, pp L309-L311 (2004)
[9] T. Watanabe, T. Sasaki, H. Funakubo, K. Saito, M,Osada, M. Yoshimoto, A. Sasaki, J. Liu, and M. Kakihana, “Ferroelectric Property of a-/b-Axis-Oriented Epitaxial Sr0.8Bi2.2Ta2O9 Thin Films Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Vol. 41, No. 12B, pp. L 1478–L 1481 (2002)
[10] X.J. Zhang, S.T. Zhang, Y.F. Chen , Z.G. Liu, N.B. Ming, “C ompletely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp. 719-725 (2003)
[11] J. Zhai and H. Chen, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2 ’Si substrates”, Appl. Phys. Lett., Vol. 82, No. 3, pp.442-444 (2003)
[12] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999)
[13] H. N. Al-Shareef, K.R. Bellur, A. L. Kingon, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor hetero- structures”, Appl. Phys. Lett., Vol. 66, No. 2, pp. 239-241 (1995)
[14] H. N. Al-Shareef, O. Auciello, A. I. Kingon, “Electrical Properties of Ferroelectric Thin-film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys., Vol. 77, No. 5, pp. 2146-2154 (1995)
[15] G. Asano, H. Morioka, H. Funakubo, T. Shibutami, N. Oshima, “Fatigue-free RuO2/Pb(Zr, Ti)O3/RuO2 Capacitor Prepared by Metalorganic Chemical Vapor Deposition at 395℃”, Appl. Phys. Lett., Vol. 83, No. 26, pp. 5506-5508 (2003)
[16] H. Irie, M. Miyayama, and T. Kudo, “Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals”, J. Appl. Phys., Vol. 90, No. 8, pp. 4089-4094 (2001)
[17] B. H. Park, B.S Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted Bismuth Titanate for Use in Non-volatile Memories”, Nature, Vol. 401, pp. 682-684 (1999)
[18] J. F. Scott, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., Vol. 70, No. 1, pp. 382-388 (1991)
[19] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue”, Appl. Phys. Lett., Vol. 64, No. 20, pp. 2673-2675 (1994)
[20] R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari, “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O Heterostructures”, App. Phys. Lett., Vol. 61, No, 13, pp. 1537-1539 (1992)
[21] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes”, Appl. Phys. Lett., Vol. 63, No. 18, pp.2570-2572 (1993)
[22] M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett., Vol. 68, No. 10, pp. 1430-1432 (1996)
[23] X. Fang, M. Tachiki, and T. Kobayashi, “Growth of RuO2 Thin Films on a MgO Substrate by Pulsed Laser Deposition Method”, Jpn. J. Appl. Phys., Vol. 36, Part 2, No. 4B, pp. L511-514 (1997)
[24] J. F. Tressler, K. Watanabe, and M. Tanaka, “Synthesis of Ruthenium Dioxide Thin Film by a Solution Chemistry Technique”, J. Am. Ceram. Soc., Vol. 79, No. 2, pp. 525-529 (1996)
[25] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001)
[26] W. T. Lim, K. R. Cho, and C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 Films Having Different Conditions of Preparation”, Thin Solid Films, Vol. 348, No. 1, pp. 56-62 (1999)
[27] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995)
[28] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998)
[29] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002)
Chapter 4
[1] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002)
[2] W. T. Lim, K. R. Cho, C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 films having different conditions of preparation”, Thin Solid Films, Vol. 348, pp. 56-62 (1999)
[3] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998)
[4] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995)
[5] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001)
[6] J. F. Moulder et al., “Handbook of X-Ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation (1992)
[7] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999)