簡易檢索 / 詳目顯示

研究生: 陳俊宇
Chun-yu Chen
論文名稱: 利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之分析
The Characterization of Textured Ruthenium Dioxide (RuO2) Thin Films Prepared with Reactive RF Magnetron Sputtering
指導教授: 甘炯耀
Jon-yiew Gan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 75
中文關鍵詞: 二氧化釕射頻磁控濺鍍X光光電子能譜儀
外文關鍵詞: RuO2, RF Magnetron Sputtering, XPS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是著重在利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之指向控制與分析。
    改變濺鍍時的參數,包括氧氣流量比例、基板溫度、工作壓力、瓦數及基板種類,並分別利用X光繞射儀、掃瞄式電子顯微鏡、掃瞄探針顯微鏡及X光光電子能譜儀觀察參數改變對二氧化釕薄膜之指向、表面型態、表面粗糙度及化學鍵結的影響。
    在氧氣流量比例為30%、基板溫度為300℃的環境之下,我們可以製備出具(110)優選指向的二氧化釕薄膜。而具備(101)優選指向的二氧化釕薄膜則是在高氧流量比例(50%)及高基板溫度(450℃)的環境下成長。二氧化釕薄膜表面粗糙度會隨著氧氣流量比例和基板溫度的上升而增加。在低氧氣流量比時,薄膜表片化學鍵結主要是由金屬釕與二氧化釕所組成。隨著氧氣的流量比增加,三氧化釕的鍵結便逐漸形成,而且比例會隨著氧氣流量比例與基板溫度的上升而增加。
    將基板種類由二氧化矽改成釕金屬/二氧化矽基板及白金/氧化鎂單晶基板,則二氧化釕薄膜呈現(200)優選指向,不受氧氣流量比、基板溫度及表面化學鍵結的影響。


    The research is concentrated in the orientation control and characterization of ruthenium dioxide (RuO2) thin films deposited by RF magnetron sputtering.
    Changing sputtering parameters, including O2 flow ratio, substrate temperature, RF power density, and substrate type, is investigated. And the effects of sputtering parameters on the orientation, surface morphology, surface roughness, and chemical bonding of RuO2 thin films are characterized by XRD, SEM, SPM, and XPS respectively.
    Under mediate O2 flow ratio (25%) and lower substrate temperature (300℃), we get the (110)-orientation preferred RuO2 films, and the (101)-orientation preferred films growth under high O2 flow ratio (50%) and high substrate temperature (450℃). The surface becomes rougher with the increase of O2 flow ratio and substrate temperature. The chemical bonding exhibits the coexistence of Ru and RuO2 under lower O2 flow ratio. As O2 flow ratio is raised, RuO3 is found in XPS spectra, and the ratio will increase with the O2 flow ratio and substrate temperature. Besides, by changing substrate as Ru or Pt/MgO, the RuO2 films will exhibit highly (200)-oriented films, no matter the O2 flow ratio, substrate temperature, and chemical bonding.

    List of Contents Abstract Ⅰ Acknowledgements Ⅱ List of Contents Ⅳ List of Tables Ⅵ List of Fugures Ⅶ Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2-1. Physical properties of RuO2 3 2-2. Application of RuO2 4 2-3. Control of RuO2 Orientation 7 Chapter 3. Experimental 15 3-1. Prepare of RuO2 thin films 15 3-1-1. Prepare and clean procedures of SiO2/Si substrates 15 3-1-2. Prepare of RuO2 on Ru/SiO2/Si substrates 16 3-1-3. Preparation of RuO2 thin film on Pt/MgO substrates 16 3-1-4. Preparation of RuO2 thin films on SiO2/Si substrates 17 3-2. Characterization of RuO2 thin films 17 Chapter 4 Results and Discussion 24 4-1. Orientations of deposited RuO2 thin films 24 4-2. Surface morphology of textured RuO2 thin films 27 4-3. Quantitative chemical analysis of RuO2 thin films 30 4-4. Discussion 34 Chapter 5 Conclusions 67 Reference 68 List of Tables Table 3-1 The parameters of Ru/RuO2 multi-layer deposition (a)Ru (b) RuO2 19 Table 3-2 The parameters of RuO2 thin films deposited on Pt/MgO substrates 20 Table 3-3 The parameters of RuO2 thin films deposited on SiO2/Si substrates 20 Table 4-1 The binding energy of ruthenium oxide thin films as obtained from a least-square curve fitting procedure of experimental XPS data 40 Table 4-2 The area ratio of XPS peak for RuO2 thin films deposited under different O2 flow ratio. The substrate temperature is fixed at 300℃. 40 Table 4-3 The area ratio of XPS peak for RuO2 thin films deposited under different substrate temperature. The O2 flow ratio is fixed at 50% 41 Table 4-4 The area ratio of XPS peak for RuO2 thin films depos- ited on Pt/MgO substrates under different O2 flow ratio. The substrate temperature is fixed at 450℃. 41 List of Figures Figure 2-1 The rutile structure unit cell 9 Figure 2-2 Density of states for the valence (oxygen p levels) and conduction (metal d level) band of RuO2 9 Figure 2-3 The effect of fatigue on P-E curve 10 Figure 2-4 Fatigue properties of (a) RuO2 /PZT/Pt/RuO2 capacitor (b) Pt/PZT/Pt capacitor fabricated using PZT films deposited at 395℃ 10 Figure 2-5 Schematic diagrams of supposed lattice matching image 11 Figure 2-6 XRD curves of the (Bi3.5Nd0.5)Ti3O12 films deposited on (a) (101)RuO2//(012)Al2O3 and (b) (001)RuO2 // (001)TiO2 substrates 11 Figure 2-7 XRD spectra of as-deposited RuO2 films deposited at a relative O2 partial pressure of 20% and 50%; sputtering power was 0.2 kW at 12 mTorr. No intentional substrate heating was applied during the deposition 12 Figure 2-8 XRD patterns of RuO2 films prepared at various substrate temperatures (a) 25℃ (b) 100℃ (c) 200℃ (d) 300℃ (e) 400℃ (f) 500℃. The films were deposited for 1h at gas flow ratio of 70/30, the working pressure of 0.66Pa, and the RF power of 80W 12 Figure 2-9 XRD patterns of RuO2 films deposited at various O2 content of the working gas (a) 10% (b) 20% (c) 30% (d) 40%. The films deposited for 1h at the substrate temperature of 500℃, the working pressure of 0.66Pa, and the RF power of 80W 13 Figure 2-10 XRD pattern of a PZT thin film grown on a RuO2/MgO substrate 13 Figure 2-11 XRD patterns of RuO2/Ru multilayers deposited on SiO2/Si substrates 14 Figure 2-12 XRD patterns of RuO2 films on Pt(111), Ru(001), and TiO2 14 Figure 3-1 The diagram of the RF magnetron sputter system 21 Figure 3-2 RuO2 thin films deposition and characterization 22 Figure 3-3 (a) The structure of RuO2/Ru/SiO2/Si substrate 23 Figure 3-3 (b) The structure of the RuO2/Pt/Mgo substrate 23 Figure 3-3 (c) The RuO2/ SiO2/Si structure 23 Figure 4-1 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 20% (c) 25% (d) 30% (e) 50%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 42 Figure 4-2 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 30% (c) 40% (d) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 43 Figure 4-3 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 20% (c) 30% (d) 50%. The Ts = 300℃, working pressure = 5 mTorr, and the RF power = 20W 44 Figure 4-4 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 30% (c) 40% (d) 50%. The Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 45 Figure 4-5 The effect of RF power density on the crystallization of (200)-oriented RuO2 films 46 Figure 4-6 The XRD curve of RuO2 films deposited on Ru at Ts = (a) 200℃ (b) 100℃. The O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 47 Figure 4-7 The XRD curves of RuO2 films deposited on Pt/MgO with O2 flow ratio = (a) 15% (b) 30% (c) 40%. The Ts = 450℃, working pressure = 5 mTorr, RF power = 20W 48 Figure 4-8 The SEM images of (110)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 25% (b) 30%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 49 Figure 4-9 The AFM images of (110)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 25% (b) 30%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 50 Figure 4-10 The SEM images of (101)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 40% (b) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 51 Figure 4-11 The AFM images of (101)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 40% (b) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 52 Figure 4-12 The (a) SEM (b) AFM images of RuO2 films deposited on Ru at Ts = 200℃, O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 53 Figure 4-13 The GIXD patterns of RuO2 films deposited on Ru at Ts = 200℃, O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 54 Figure 4-14 The (a) SEM (b) AFM images of RuO2 films deposited on Pt/MgO at Ts = 450℃, O2 flow ratio = 40%, working pressure = 5 mTorr, and the RF power = 20W 55 Figure 4-15 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 15%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 56 Figure 4-16 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 25%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 57 Figure 4-17 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 30%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 58 Figure 4-18 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 59 Figure 4-19 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 400℃, working pressure = 10 mTorr, and the RF power = 20W 60 Figure 4-20 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 61 Figure 4-21 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on Pt/MgO substrates with O2 flow ratio = 15%, Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 62 Figure 4-22 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on Pt/MgO substrates with O2 flow ratio = 40%, Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 63 Figure 4-23 The reaction process models of the RuO2 films growth by reactive sputtering under (a) low O2/Ar (b) mediate O2/Ar (c) high O2/Ar ratio 64 Figure 4-24 Two-dimensional atomic configurations of Ru and RuO2: (a) Ru (001) p plane (b) RuO2 (100) plane (c) epitaxial relationship between 5×4 Ru (001) and 3 × 3 RuO2 (100) planes 65 Figure 4-25 Probable epitaxial relationships of rutile on Pt 65 Figure 4-26 The 1-D growth of bar-like grains for (101)-oriented RuO2 films 66

    Chapter 1
    [1] Y. M. Sun and J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, doctoral thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003)
    [2] X. J. Zhang, S. T. Zhang, Y. F. Chen, Z. G. Liu, N. B. Ming, “Completely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp.719-725 (2003)
    [3] C. P. Lin and J. Y. Gan, “摻雜釹(Nd)之鈦酸鉍(BIT)鐵電薄膜優選指向控制”, master thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003)
    [4] B. H. Park, S. J. Hyun, S. D. Bu, and T. W. Noh, “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12”, Appl. Phys. Lett. Vol. 74, No. 13, pp. 1907-1909 (1999)
    [5] B. H. Park, B.S. Kang, T. W. Noh, J. Lee, and W. Jo , “Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature, Vol. 401, pp. 682-684 (1999)
    [6] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002)

    Chapter 2
    [1] K. Y. Shih and T. Y. Tseng, “ Properties and Fabrication of Reactively Magnetron Sputtered Ruthenium Dioxide Thin Films”, Master Thesis, Nation Chiao Tung University, Taiwan (1997)
    [2] A. K. Goel, G.. Skorinko, and F. H. Pollak, “Optical Properties of Single-crystal Rutile RuO2 and IrO2”, Phys. Rev. B, Vol. 24, No. 12, pp. 7342-7350 (1981)
    [3] Y. M. Sun, J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, Doctoral Thesis, National Tsing-Hua University, Taiwan (2003)
    [4] M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc., Vol. 132, No. 11, pp 2677-2685 (1985)
    [5] L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881 (1987)
    [6] H. N. Al-Shareef, A. I. Kingon, X. Chen, K. B. Bellur, and O. Auciello, “Contribution of Electrodes and Microstructure to the Electrical Properties of Pb(Zr0.53Ti0.47)O3 Thin Film Capacitors”, J. Mater. Res., Vol. 9, pp. 2968-2975, No. 11 (1994)
    [7] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002)
    [8] T. Watanabe, T. Kojima, H. Uchida, I. Okada, and H. Funakubo, “Spontaneous Polarization of Neodymium-Substituted Bi4Ti3O12 Estimated from Epitaxially Grown Thin Films with in-Plane c-Axis Orientations”, Jpn. J. Appl. Phys., Vol. 43, No. 2B, pp L309-L311 (2004)
    [9] T. Watanabe, T. Sasaki, H. Funakubo, K. Saito, M,Osada, M. Yoshimoto, A. Sasaki, J. Liu, and M. Kakihana, “Ferroelectric Property of a-/b-Axis-Oriented Epitaxial Sr0.8Bi2.2Ta2O9 Thin Films Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Vol. 41, No. 12B, pp. L 1478–L 1481 (2002)
    [10] X.J. Zhang, S.T. Zhang, Y.F. Chen , Z.G. Liu, N.B. Ming, “C ompletely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp. 719-725 (2003)
    [11] J. Zhai and H. Chen, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2 ’Si substrates”, Appl. Phys. Lett., Vol. 82, No. 3, pp.442-444 (2003)
    [12] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999)
    [13] H. N. Al-Shareef, K.R. Bellur, A. L. Kingon, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor hetero- structures”, Appl. Phys. Lett., Vol. 66, No. 2, pp. 239-241 (1995)
    [14] H. N. Al-Shareef, O. Auciello, A. I. Kingon, “Electrical Properties of Ferroelectric Thin-film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys., Vol. 77, No. 5, pp. 2146-2154 (1995)
    [15] G. Asano, H. Morioka, H. Funakubo, T. Shibutami, N. Oshima, “Fatigue-free RuO2/Pb(Zr, Ti)O3/RuO2 Capacitor Prepared by Metalorganic Chemical Vapor Deposition at 395℃”, Appl. Phys. Lett., Vol. 83, No. 26, pp. 5506-5508 (2003)
    [16] H. Irie, M. Miyayama, and T. Kudo, “Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals”, J. Appl. Phys., Vol. 90, No. 8, pp. 4089-4094 (2001)
    [17] B. H. Park, B.S Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted Bismuth Titanate for Use in Non-volatile Memories”, Nature, Vol. 401, pp. 682-684 (1999)
    [18] J. F. Scott, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., Vol. 70, No. 1, pp. 382-388 (1991)
    [19] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue”, Appl. Phys. Lett., Vol. 64, No. 20, pp. 2673-2675 (1994)
    [20] R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari, “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O Heterostructures”, App. Phys. Lett., Vol. 61, No, 13, pp. 1537-1539 (1992)
    [21] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes”, Appl. Phys. Lett., Vol. 63, No. 18, pp.2570-2572 (1993)
    [22] M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett., Vol. 68, No. 10, pp. 1430-1432 (1996)
    [23] X. Fang, M. Tachiki, and T. Kobayashi, “Growth of RuO2 Thin Films on a MgO Substrate by Pulsed Laser Deposition Method”, Jpn. J. Appl. Phys., Vol. 36, Part 2, No. 4B, pp. L511-514 (1997)
    [24] J. F. Tressler, K. Watanabe, and M. Tanaka, “Synthesis of Ruthenium Dioxide Thin Film by a Solution Chemistry Technique”, J. Am. Ceram. Soc., Vol. 79, No. 2, pp. 525-529 (1996)
    [25] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001)
    [26] W. T. Lim, K. R. Cho, and C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 Films Having Different Conditions of Preparation”, Thin Solid Films, Vol. 348, No. 1, pp. 56-62 (1999)
    [27] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995)
    [28] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998)
    [29] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002)

    Chapter 4
    [1] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002)
    [2] W. T. Lim, K. R. Cho, C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 films having different conditions of preparation”, Thin Solid Films, Vol. 348, pp. 56-62 (1999)
    [3] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998)
    [4] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995)
    [5] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001)
    [6] J. F. Moulder et al., “Handbook of X-Ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation (1992)
    [7] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE