研究生: |
羅之佑 Lo, Chih-Yu |
---|---|
論文名稱: |
共形重力中的輻射黑洞 Vaidya black hole in Weyl gravity |
指導教授: |
朱創新
Chu, Chong-Sun |
口試委員: |
吳思曄
Wu, Si-Ye 耿朝強 Geng, Chao-Qiang 楊毅 Yang, Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 共形重力 、輻射黑洞 、超平移對稱 |
外文關鍵詞: | Weyl gravity, Vaidya metric, Supertranslation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在魏爾重力中,一般的輻射黑洞所帶有的能量動量張量與愛因斯坦重力論中的不同,並不是只有帶有能量項。在魏爾重力中,我們仍然能構造只帶有能量項的輻射黑洞,發現其會有額外的線性項貢獻。我們將可達瑪向量推廣到魏爾重力中,並用量子穿隧的方法研究魏爾重力中輻射黑洞的輻射率。我們也考慮時空的超平移對稱性,並計算經過超平移之後的輻射黑洞所帶有的能量動量張量。最後,我們也透過量子穿隧的方法計算超平移之輻射黑洞的輻射率,我們會發現該輻射仍然是滿足波茲曼分布,並且其帶有的溫度會與角度相關,而此結果是和愛因斯坦重力論中所得到的結果相同。
Vaidya metric describe a radiating black hole in Einstein gravity. The usual Vaidya metric in Einstein gravity is not a null dust solution in Weyl gravity. However, we find a family of null dust Vaidya solutions for Weyl gravity, which receive an extra linear term. We also use the tunneling method to study the radiation profile of Vaidya metrics by extending the definition of the Kodama vector to Weyl gravity. Finally, we introduce supertranslation to asymptotically flat black hole in Weyl gravity and find out the corresponding energy momentum tensor needed to implant supertranslation hair onto it. We also apply tunneling method to supertranslated Vaidya black hole in Weyl gravity. We find out that the radiation is still thermal and the radiation temperature has the same angular dependence as in the Einstein case.
[1] Stephen L. Adler. Einstein gravity as a symmetry-breaking effect in quantum fieldtheory.Rev. Mod. Phys., 54, 1982.
[2] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. Gravitational Waves inGeneral Relativity. VII. Waves from Axi-Symmetric Isolated Systems.Proc. R. Soc.Lond. A, 269, 1962.
[3] I. Booth. Black-hole boundaries.Can. J. Phys., 83, 2005.
[4] Chong-Sun Chu and Yoji Koyama. Soft hair of dynamical black hole and Hawkingradiation.J. High Energ. Phys., 2018.
[5] W. Collins. Mechanics of apparent horizons.Phys. Rev. D, 45, 1992.
[6] Geoffrey Comp`ere and Adrien Fiorucci. Advanced Lectures on General Relativity.arXiv:1801.07064 [hep-th], 2018.
[7] Cemsinan Deliduman, Oˇguzhan Kas,ık ̧cı, and Barıs,Yapıs,kan. Flat galactic rotationcurves from geometry in Weyl gravity.Astrophys. Space Sci., 365, 2020.
[8] K. C. Freeman. A Treatise on the Theory of Bessel Functions.Nature, 156, 1945.
[9] K. C. Freeman. On the Disks of Spiral and S0 Galaxies.Astrophys. J., 160, 1970.
[10] S. W. Hawking. Particle creation by black holes.Comm. Math. Phys., 43, 1975.
[11] Stephen W. Hawking, Malcolm J. Perry, and Andrew Strominger. Superrotationcharge and supertranslation hair on black holes.J. High Energ. Phys., 2017.
[12] Sean A. Hayward. General laws of black-hole dynamics.Phys. Rev. D, 49, 1994.
[13] Sean A. Hayward. Unified first law of black-hole dynamics and relativistic thermo-dynamics.Class. Quantum Grav., 15, 1998.
[14] William A. Hiscock. Gravitational entropy of nonstationary black holes and sphericalshells.Phys. Rev. D, 40, 1989.
[15] H. Kodama. Conserved Energy Flux for the Spherically Symmetric System and theBackreaction Problem in the Black Hole Evaporation.Prog. Theor. Phys., 63, 1980.
[16] H. L ̈u, Yi Pang, and C. N. Pope. Conformal gravity and extensions of critical gravity.Phys. Rev. D, 84, 2011.
[17] H. L ̈u and C. N. Pope. Critical Gravity in Four Dimensions.Phys. Rev. Lett., 106,2011
[18] Juan Maldacena. Einstein gravity from conformal gravity.arXiv:1105.5632 [hep-th],2011.
[19] Philip D. Mannheim. Making the case for conformal gravity.Found. Phys., 42, 2012.
[20] Philip D. Mannheim. Comment on “Problems with Mannheim’s conformal gravityprogram”.Phys. Rev. D, 93, 2016.
[21] Philip D. Mannheim and James G. O’Brien. Fitting galactic rotation curves withconformal gravity and a global quadratic potential.Phys. Rev. D, 85, 2012.
[22] Philip D. Mannheim and James G. O’Brien. Galactic rotation curves in conformalgravity.J.: Phys. Conf. Ser., 437, 2013.
[23] Maulik K. Parikh and Frank Wilczek. Hawking Radiation As Tunneling.Phys. Rev.Lett., 85, 2000.
[24] Farrin Payandeh and Mohsen Fathi. R2theory of gravity.J.: Phys. Conf. Ser., 442,2013.
[25] R. J. Riegert. Birkhoff’s Theorem in Conformal Gravity.Phys. Rev. Lett., 54, 1984.
[26] R. Sachs. Asymptotic Symmetries in Gravitational Theory.Phys. Rev., 128, 1962.
[27] K. S. Stelle. Renormalization of higher-derivative quantum gravity.Phys. Rev. D,16, 1977.
[28] K. S. Stelle. Classical gravity with higher derivatives.Gen. Relativ. Gravit., 9, 1978.
[29] Andrew Strominger. Advanced Lectures on General Relativity.arXiv:1703.05448[hep-th], 2017.
[30] Gerard ’t Hooft. A Class of Elementary Particle Models Without Any AdjustableReal Parameters.Found. Phys., 41, 2011.
[31] Youngsub Yoon. Problems with Mannheim’s conformal gravity program.Phys. Rev.D, 88, 2013.