簡易檢索 / 詳目顯示

研究生: 黃騰賢
Huang, Teng-Hsien
論文名稱: 趨勢資訊內容分析、整合及視覺化模式
The Model for Analysis, Integration and Visualization of Trend Information
指導教授: 侯建良
Hou, Jiang-Liang
口試委員: 余豐榮
Yu, Fong-Jung
楊士霆
Yang, Shih-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 211
中文關鍵詞: 分群方法趨勢分析趨勢資訊內容整合趨勢資訊視覺化
外文關鍵詞: Clustering, Trend Analysis, Information Integration, Information Visualization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當人們欲瞭解一議題之趨勢發展情形(如產業趨勢概況)時,其往往透過網路平台搜尋該標的議題之趨勢的相關報導,以獲得其所關心議題之相關趨勢資訊。然而,於理解所關心議題之相關趨勢資訊的過程中,人們往往需花費時間閱讀各趨勢資訊之內容,並進一步組織同質趨勢資訊中關鍵重點或量化資訊。此外,此些同質趨勢資訊之內容常以文字方式呈現,人們較不易掌握其所對應之趨勢消長狀況而無法有效地進行相關決策。
    因此,為協助人們快速掌握感興趣議題之發展趨勢,本研究期望發展一套「趨勢資訊內容分析、整合及視覺化」模式。此模式可先擷取趨勢資訊內容中所包含之趨勢資訊屬性(包含「資訊來源」、「資訊統計時間」、「資訊研究區域」與「資訊調查對象」、「趨勢項目」、「趨勢變量」與「趨勢特徵」等7項屬性),以將趨勢資訊內容結構化;之後,依據趨勢資訊屬性擷取結果,此模式可將同質之趨勢資訊區分至同一趨勢資訊群集;最後,此模式可進一步將各趨勢資訊群集中所有趨勢資訊進行屬性值彙整,並以視覺化方式呈現彙整後之各趨勢資訊群集所對應的趨勢變化情形,以提供資訊需求者明確之趨勢消長狀況。因此,當人們欲瞭解某議題之發展趨勢時,其可透過此模式所提供之視覺化圖表快速且準確掌握該議題之趨勢消長狀況。


    As people are interested in the tendency of a specific issue, they usually search for the relevant reports related to the issue through the Internet. They have to collect and organize the contents of these reports to acquire the trend information of the issue that they concern. However, the trend of an issue might exist in several distinct reports. As a result, they have to spend time in browsing and organizing these decentralized trend information. On the other hand, the reports of trend information are usually presented in text form; therefore, it is not easy for readers to efficiently acquire the trend distribution of the issue. Owing to the above problem, this research develops a model for integration and visualization of trend information. The proposed model can be used to integrate and visualize similar trend information. By applying the model, the similar trend information can be clustered and each cluster of trend information can be visualized to reveal the trend distribution.

    摘要...............................................I ABSTRACT...........................................II 目錄...............................................III 圖目錄..............................................V 表目錄..............................................VII 第一章、研究背景.....................................1 1.1研究動機與目的....................................1 1.2研究步驟..........................................5 1.3研究定位..........................................7 第二章、文獻回顧.....................................10 2.1趨勢資訊屬性擷取..................................10 2.1.1針對文章內容擷取趨勢特徵.........................10 2.1.2針對時序數據擷取趨勢特徵.........................14 2.1.3針對圖像資訊擷取趨勢特徵.........................18 2.2資訊內容整合......................................20 2.2.1針對一般性議題之相關資訊進行整合..................21 2.2.2針對專業領域議題之相關資訊進行整合................24 2.3趨勢資訊視覺化....................................35 2.3.1以視覺化方式呈現目標議題之量化資訊................35 2.3.2以視覺化方式呈現目標議題之關鍵重點................40 2.3.3以視覺化方式呈現目標議題之量化資訊及關鍵重點.......43 2.4小結.............................................49 第三章、趨勢資訊內容分析、整合及視覺化模式..............51 3.1現行趨勢資訊內容解析...............................52 3.1.1趨勢資訊屬性釐清................................52 3.1.2趨勢資訊屬性之表達方式解析.......................67 3.1.3趨勢資訊內容整併原則釐清.........................74 3.2趨勢資訊屬性擷取..................................81 3.3趨勢資訊分群......................................95 3.4趨勢資訊內容整併及視覺化...........................107 3.5小結.............................................114 第四章、模式績效驗證與分析............................116 4.1模式驗證方式說明..................................116 4.2模式驗證結果分析..................................120 第五章、結論與未來展望...............................139 5.1論文總結.........................................139 5.2未來發展.........................................141 參考文獻............................................143 附錄A、模式驗證之相關資料.............................149 附錄B、模式於第二階段各週期之績效驗證結果..............160 附錄C、「趨勢資訊內容整併及視覺化」議題驗證之問卷設計...193

    1. Alshawi, S., Missi, F. and Eldabi, T., 2003, “Healthcare Information Management: The Integration of Patients’ Data,” Logistics Information Management, Vol. 16, pp. 286-295.
    2. Baumgartner, R., Gottlob, G. and Herzog, M., 2009, “Scalable Web Data Extraction for Online Market Intelligence,” Proceedings of the VLDB Endowment, Vol. 2, pp. 1512-1523.
    3. Beneki, C., Eeckels, B. and Leon, C., 2012, “Signal Extraction and Forecasting of The UK Tourism Income Time Series: A Singular Spectrum Analysis Approach,” Journal of Forecasting, Vol. 31, pp. 391-400.
    4. Cameron, M., Power, R., Robinson, B. and Yin, J., 2012, “Emergency Situation Awareness from Twitter for Crisis Management,” Proceedings of the 21st International Conference on World Wide Web, pp. 695-698.
    5. Charbonnier, S. and Portet, F., 2012, “A Self-Tuning Adaptive Trend Extraction Method for Process Monitoring and Diagnosis,” Journal of Process Control, Vol. 22, pp. 1127-1138.
    6. Chen, J., Wu, J., Zhang, L., Zou, J., Liu, G., Zhang, R. and Yu, B., 2013, “Deformation Trend Extraction Based on Multi-Temporal InSAR in Shanghai,” Remote Sens, Vol. 5, pp. 1774-1786.
    7. Chiu, D., Kwok, B., Wong, R., Cheung, S. C., Kafeza, E. and Kafeza, M., 2004, “Alerts for Healthcare Process and Data Integration,” Proceedings of the 37th Hawaii International Conference on System Sciences, DOI: 10.1109/HICSS.2004.1265371.
    8. Chun, S. A. and MacKellar, B., 2012, “Social Health Data Integration using Semantic Web,” Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 392-397.
    9. Gonzalez-Romera, E., Jaramillo-Moran, M. A. and Carmona-Fernandez, D., 2006, “Monthly Electric Energy Demand Forecasting Based on Trend Extraction,” IEEE Transactions on Power Systems, Vol. 21, pp. 1946-1953.
    10. Gorodov, E. Y. and Gubarev V. V., 2013, “Analytical Review of Data Visualization Methods in Application to Big Data,” Journal of Electrical and Computer Engineering, Vol. 2013, DOI: 10.1155/2013/969458.
    11. Goyal, V., Agarwal, A., Pilli, E.S. and Mehta, S., 2015, “Information Integration for Movies Data Using Graph Database,” Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), DOI: 10.1109/SPICES.2015.7091523.
    12. Hamre, T., Sandven, S. and Tuama, É., 2005, “DISMAR: Data Integration System for Marine Pollution and Water Quality,” Proceedings of the 2005 MERIS and AATSR Workshop, ID: 12.1.
    13. Han, S. F., Zhu, R. F. and Zhao, J., 2017, “A Study of Clinical Psychological Nursing Research Hotspots in China and Variation Trends Based on Word Frequency Analysis and Visualization Analysis,” Chinese Nursing Research, Vol. 4, pp. 186-191.
    14. Han, Y., Wang, G., Yu, J., Liu, C., Zhang, Z. and Zhu, M., 2016, “A Service-Based Approach to Traffic Sensor Data Integration and Analysis to Support Community-Wide Green Commute in China,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, pp. 2648-2657.
    15. Horry, Y., 2017, “Financial Information Description Language and Visualization/Analysis Tools,” Computer Languages, Systems & Structures, Vol. 50, pp. 31-52.
    16. Hu, S., Corry, E., Curry, E., Turner, W. and O'Donnell, J., 2016, “Building Performance Optimization: A Hybrid Architecture for The Integration of Contextual Information and Time-Series Data,” Automation in Construction, Vol. 70, pp. 51-61.
    17. Ingle, V. and Deshmukh, S., 2017, “Live News Streams Extraction for Visualization of Stock Market Trends,” Proceedings of the 2017 International Conference on Signal, Networks, Computing, and Systems, pp. 297-301.
    18. Ingvaldsen, J. E., Gulla, J. A., Laegreid, T. and Sandal, P. C., 2006, “Financial News Mining: Monitoring Continuous Streams of Text,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, DOI: 10.1109/WI.2006.80.
    19. Kim, K., Kim, H., Kim, W., Kim, C., Kim, J. and Yu, J., 2018, “Integration of Industry Foundation Classes Objects and Facility Management Work Information Using Semantic Web,” Automation in Construction, Vol. 87, pp. 173-187.
    20. Kulawiak, M., Prospathopoulos, A., Perivoliotis, L., Łuba, M., Kioroglou, S. and Stepnowski, A., 2010, “Interactive Visualization of Marine Pollution Monitoring and Forecasting Data via A Web-Based GIS,” Computers & Geosciences, Vol. 36, pp. 1069-1080.
    21. Kulp, C. S., Lee, H. L. and Ofek, E., 2004, “Manufacturer Benefits from Information Integration with Retail Customers,” Management Science, Vol. 50, pp. 431-444.
    22. Lee, B., Riche, N. H., Karlson, A. K. and Carpendale, S., 2010, “Spark Clouds: Visualizing Trends in Tag Clouds,” IEEE Transactions on Visualization and Computer Graphics, Vol. 16, pp. 1182-1189.
    23. Li, H., Fan, H. and Mao, F., 2016, “A Visualization Approach to Air Pollution Data Exploration- A Case Study of Air Quality Index (PM2.5) in Beijing, China,” Meteorology & Atmospheric Sciences, Vol. 7, DOI: 10.3390/atmos7030035.
    24. Liu, X. X., Han, F. L. and Wang, J. G., 2009, “Wavelet Extended EMD Noise Reduction Model for Signal Trend Extraction,” Proceedings of 2nd International Congress on Image and Signal Processing, DOI: 10.1109/CISP.2009.5303744.
    25. Li, X. and Qin, H., 2014, “A Study on Visualizations of New Product Trends on Online Social Networks,” Proceedings of the 2014 International Conference on Service Sciences, pp. 202-205.
    26. Lu, W., Ai, T., Zhang, X. and He, Y., 2017, “An Interactive Web Mapping Visualization of Urban Air Quality Monitoring Data of China,” Meteorology & Atmospheric Sciences, Vol. 8, DOI: 10.3390/atmos8080148.
    27. Malik, M. M., Bhardwaj, V. S. and Fiorletta, H., 2011, “Accurate Information Extraction for Quantitative Financial Events,” Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 2497-2500.
    28. Mashima, D., Kobourov, S. and Hu Y., 2012, “Visualizing Dynamic Data with Maps,” IEEE Transactions on Visualization and Computer Graphics, Vol. 18, pp. 1424-1437.
    29. Mathioudakis, M. and Koudas, N., 2010, “Twitter Monitor: Trend Detection over The Twitter Stream,” Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1155-1158.
    30. Maurya, M. R., Paritosh, P. K., Rengaswamy, R. and Venkatasubramanian, V., 2010, “A Framework for On-Line Trend Extraction and Fault Diagnosis,” Engineering Applications of Artificial Intelligence, Vol. 23, pp. 950-960.
    31. Moon, S. P., Liu, Y., Entezari, S., Pirzadeh, A., Pappas, A. and Pfaff, M., 2013, “Top Health Trends: An Information Visualization Tool for Awareness of Local Health Trends,” Proceedings of the 2013 International ISCRAM Conference, pp. 177-187.
    32. Mouttham, A., Peyton, L., Eze, B. and Saddik, A., 2009, “Event-Driven Data Integration for Personal Health Monitoring,” Journal of Emerging Technologies in Web Intelligence, pp. 110-118.
    33. Naito, S. and Matsushita, M., 2015, “Supporting Consecutive Data Exploration by Visualizing Spatio-Temporal Trend Information,” Proceedings of the 2015 Conference on Technologies and Applications of Artificial Intelligence, pp. 227-231.
    34. Nelis, J., Verslype, D. and Develder, C., 2011, “Intelligent Distributed Multimedia Collection: Content Aggregation and Integration,” Proceedings of the 36th Annual IEEE Conference on Local Computer Networks, DOI: 10.1109/LCN.2011.6115189.
    35. Ng, Y. W. and Qu, H., 2014, “Trend Focus: Visualization of Trends in Financial News with Indicator Sets,” Proceedings of 2014 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 7-12.
    36. Noda, S. and Fujita, K., 2015, “Trend Extraction Method using Co-occurrence Patterns from Tweets,” Proceedings of the 2015 IIAI 4th International Congress on Advanced Applied Informatics, pp. 629-632.
    37. Onorati, T., Diaz, P. and Carrion, B., 2018, “From Social Networks to Emergency Operation Centers: A Semantic Visualization Approach,” Future Generation Computer Systems, DOI: 10.1016/j.future.2018.01.052.
    38. Plaisant, C., 2017, “Visualization of Temporal Patterns in Patient Record Data,” Fundamental & Clinical Pharmacology, Vol. 32, pp. 85-87.
    39. Saga, R., Terachi, M. and Tsuji, H., 2009, “FACT-Graph: Trend Visualization by Frequency and Co-occurrence,” Electronics and Communications in Japan, Vol. 95, pp. 545-552.
    40. Sege, J., Ghanem, M., Ahmad, W., Bader, H. and Rubin Y., 2017, “Distributed Data Collection and Web-Based Integration for More Efficient and Informative Groundwater Pollution Risk Assessment,” Environmental Modelling & Software, Vol. 100, pp. 278-290.
    41. Stoffel, F., Jackle, D. and Keim, D., 2014, “Enhanced News-Reading: Interactive and Visual Integration of Social Media Information,” Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC), pp. 21-28.
    42. Tanaka, K., 2004, “Content Integration from Web and Broadcast Information Sources,” Proceedings of the 12th International Conference on Informatics Research for Development of Knowledge Society Infrastructure (ICKS 2004), DOI: 10.1109/ICKS.2004.1313414.
    43. Tran, T., Luo, W., Phung, D., Gupta, S., Rana, S., Kennedy, R. L., Larkins, A. and Venkatesh, S., 2014, “A Framework for Feature Extraction from Hospital Medical Data with Applications in Risk Prediction,” BMC Bioinformatics, DOI: 10.1186/s12859-014-0425-8.
    44. Wongsuphasawat, K., Guerra G´omez, J. A., Plaisant, C., Wang, D. T., Shneiderman, B. and Meirav Taieb-Maimon, M., 2011, “Life Flow: Visualizing an Overview of Event Sequences,” Proceedings of 2011 SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1747-1756.
    45. Wu, G., Liu, J. and Wang, C., 2017, “Predicting Drug-Disease Interactions by Semi-Supervised Graph Cut Algorithm and Three-Layer Data Integration,” BMC Medical Genomics, DOI: 10.1186/s12920-017-0311-0.
    46. Xiang, F., Yin, Q., Wang, Z. and Jiang, G. F., 2016, “Systematic Method for Big Manufacturing Data Integration and Sharing,” Proceedings of the 12th International Conference on Frontiers of Design and Manufacturing (ICFDM), pp. 3345-3358.
    47. Yang, P., Dumont, G. and Ansermino, J. M., 2006, “Adaptive Change Detection in Heart Rate Trend Monitoring in Anesthetized Children,” IEEE Transactions on Biomedical Engineering, Vol. 53, pp. 2211-2219.
    48. Yang, Y., Lu, W., Domack, J., Li, T., Chen, S. C., Luis, S. and Navlakha, J., 2012, “MADIS: A Multimedia-Aided Disaster Information Integration System for Emergency Management,” Proceedings of the 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 233-241.
    49. Yu, W., Wardrop, N., Bain, R. and Wright, J., 2017, “Integration of Population Census and Water Point Mapping Data-A Case Study of Cambodia, Liberia and Tanzania,” International Journal of Hygiene and Environmental Health, DOI: 10.1016/j.ijheh.2017.04.006.
    50. Zhang, Y., Li, S., Zhang, J. and Song, D., 2013, “A Study on Coastline Extraction and Its Trend Based on Remote Sensing Image Data Mining,” Hindawi Publishing Corporation Abstract and Applied Analysis, ID: 693194.

    QR CODE