研究生: |
李明龍 Li, Ming-Lung |
---|---|
論文名稱: |
大腦動脈瘤內血液動力學分析 Hemodynamics Analysis in Intracranial Aneurysm |
指導教授: |
林昭安
Lin, Chao-An 劉通敏 Liou, Tong-Miin |
口試委員: |
牛仰堯
Niu, Yang-Yao 吳宗信 Wu, Chong-shin 陳慶耀 Chen, Chin-Yao 陳明志 Chern, Ming-Jyh 廖川傑 Liao, Chuan-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 131 |
中文關鍵詞: | 動脈瘤 、風險 、計算流體力學 、血液動力學分析 、拓樸學 |
外文關鍵詞: | aneurysm, risk, CFD, hemodynamic, tomography |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血流動力學對於腦動脈瘤的形成、生長和破裂的成因是重要的課題。並對患者動脈瘤模型執行數值分析,對增強我們對腦動脈瘤的流動相關病理生理學知識的有很大的幫助。本研究採用多孔材料模擬線圈栓塞,結果顯示,當填充率在35%和45%之間時,平均剪切應力減少了37.5%至57.2%。並且,使用計算流體動力學來分析壁面剪切應力分佈,評估血液動力學因素及形態參數對於動脈瘤破裂的相關性。在形態學上,破裂組和未破裂組之間的四個變量(縱橫比,橢圓度指數,非球形指數和波動指數)顯著不同。在動脈瘤表面上的低壁剪切面積的百分比在破裂和未破裂的動脈瘤組之間也是顯著的(分別為46.5%對29.8%,P = 0.01)。此外,對於長寬比> 1.4或非球形度指數> 0.16的動脈瘤,結合低壁切應力比> 39%,破裂病例的百分比分別為88.2%和84.2%。
除此之外,本研究也發現,在拍攝斷層掃描血管造影的同時,腦動脈瘤正在破裂的案例,並獲取破裂區域的精確位置。研究分析表示破裂區域的平均和時間平均WSSes低於動脈瘤表面上的WSS。本研究顯示低WSS區域與動脈瘤破裂區域之間存在相關性。這可能有助於預測動脈瘤可能破裂的位置,從而與治療決策過程相關。
Hemodynamics is important in the formation, growth and rupture of the cerebral aneurysm. Numerical analysis of patient-specific aneurysm models has great potential for enhancing our knowledge of the flow-related pathophysiology of cerebral aneurysms. A porous material was used to represent the coil embolization. The results show the average shear stress is reduced by 37.5% to 57.2% in case of the filling ratio being between 35% and 45%.The ruptured aneurysm study has shown a correlation between regions of low WSS and regions of aneurysm rupture.
We then used computational fluid dynamics to determine the wall shear stress distribution, evaluated the hemodynamic factors, and analyzed aneurysm geometries for a range of morphological parameters. Morphologically, four variables (aspect ratio, ellipticity index, non-sphericity index, and undulation index) were significantly different between the ruptured and unruptured groups. Hemodynamically, the percentage of the low wall shear area over the entire aneurysmal surface was also significant between the ruptured and unruptured aneurysm groups (46.5% versus 29.8%, respectively, P=0.01). Furthermore, for the aneurysms with either aspect ratio >1.4 or non-sphericity index > 0.16 in conjunction with ratio of low wall shear stress >39%, the percentages of ruptured cases were 88.2% and 84.2%, respectively. Among the 7morphologic and 6 hemodynamic parameters investigated, the aspect ratio, ellipticity index, non-sphericity index, undulation index area , and wall shear stress were significant.
Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. The present study has shown a correlation between regions of low WSS and regions of aneurysm rupture. This could be helpful in predicting where an aneurysm might rupture, and thus be of relevance to the therapeutic decision-making process.
Bibliography
[1] Albert L. R. (2002). ANEURYSMS. Neurosurgery, 51[Suppl 1]:121–158.
[2] Wiebers, D. O., Whisnant, J. and Forbes, G. (1998). Unruptured intracranial aneurysms--risk of rupture and risks of surgical intervention. International Study of Unruptured Intracranial Aneurysms Investigators. N Engl J Med, 339(24):1725-33.
[3] Weir, B., Amidei, C., K, Ongable G, et al. (2003). The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg, 99(3):447-451.
[4] Thubrikar, M. J. and Robicsek, F. (1995). Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg, 59(6):1594-603.
[5] Hassan, T., Timofeev, E.V. and Saito, T. (2005). A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg, 103(4):662-680.
[6] Brisman, J.L., Song, J.K. and Newell, D.W. (2006). Cerebral aneurysms. N Engl J Med, 355 (9): 928–39.
[7] Masaaki, S., Marie, O., Kiyoshi, T., Ryo T., Motoharu, H., Katada, K., Morita, A., Kirino, T., Shojima, M., Oshima, M., Takagi, K., Torii, R. and Hayakawa, M., (2004). Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysm, Stroke, 35, 2500 - 2505.
[8] Mantha, A., Karmonik, C., Benndorf, G. and Strother, C. (2006). Hemodynamics in a Cerebral Artery before and after the Formation of an Aneurysm, AJNR Am J Neuroradiol, 27, 1113–1118.
[9] Cebral, J.R., Castro, M.A., Burgess, J.E., Pergolizzi, R.S., Sheridan, M.J. and Putman, C.M. (2005). Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol, 26 : 2550-2559.
[10] Ford, M.D., Stuhne, G.R. and Nikolov, H.N., (2005). Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imaging, 24(12):1586-92.
[11] Burleson, A.C., Strother, C.M. and Turitto, V.T. (1995). Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37(4):774-82; discussion 782-4.
[12] Meng, H., Wang, Z., Kim, M., Ecker, R.D. and Hopkins, L. N. (2006). Saccular Aneurysms on Straight and Curved Vessels Are Subject to Different Hemodynamics: Implications of Intravascular Stenting. AJNR Am J Neuroradiol, 27(9): 1861–1865.
[13] Luscher, T. F. and Tanner, F. C. (1993). Endothelial regulation of vascular tone and growth. Am J Hypertens, 6(7 Pt 2):283S-293S.
[14] Rossitti, S. (1998). Shear stress in cerebral arteries carrying saccular aneurysms. A preliminary study. Acta Radiol, 39(6):711-7.
[15] Tateshima, S., Murayama, Y. and Villablanca, J. P. (2003). In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke, 34(1):187-92.
[16] Tateshima, S., Vinuela, F., Villablanca, J. P. (2003). Three-dimensional blood flow analysis in a wide-necked internal carotid artery-ophthalmic artery aneurysm. J Neurosurg, 99(3):526-33.
[17] Stamler, J.S. and Redox. (1994). signaling: nitrosylation and related target interactions of nitric oxide. Cell, 78(6):931-6.
[18] Zhang, J., Schmidt, J., Ryschich, E., Mueller-Schilling, M., Schumacher, H. and Allenberg, J.R. (2003) Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury. J Vasc Surg.,38(2):360-7.
[19] Fukuda, S., Hashimoto, N. and Naritomi, H., (2000). Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation, 101(21):2532-8.
[20] Johanning, J.M., Franklin, D.P., Han, D.C., Carey, D.J., Elmore, J.R. (2001). Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion. J Vasc Surg, 33:579–586.
[21] Tateshima, S., Murayama, Y. and Villablanca, J. P. (2003). In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke, 34(1):187-92.
[22] Hassan, T., Timofeev, E.V. and Saito, T. (2004). Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. AJNR Am J Neuroradiol, 25(8):1356-65.
[23] Mantha, A., Karmonik, C., Benndorf, G. and Strother, C. (2006). Hemodynamics in a Cerebral Artery before and after the Formation of an Aneurysm, AJNR Am J Neuroradiol, 27, 1113–1118.
[24] Turjman, F., Massoud, T. F., Sayre, J. and Vinuela, F. (1998). Predictors of aneurysmal occlusion in the period immediately after endovascular treatment with detachable coils: a multivariate analysis. AJNR Am J Neuroradiol, 19(9):1645-51.
[25] Kumar, B.V.R. and Naidu, K.B., (1996). Hemodynamics in Aneurysm,. Computers and Biomedical Research, Vol.29, pp. 119-139.
[26] Katada, K., Morita, A., Kirino, T., Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., (2004). Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysm, Stroke, 35, 2500 - 2505.
[27] Groden, C., Laudan, J., Gatchell, S.,Three-Dimensional Pulsatile Flow Simulation before and after Endovascular Coil Embolization of a Terminal Cerebral Aneurysm., Journal of Cerebral Blood Flow & Metabolism, 21:1464–1471.
[28] Hong, S. B., and Kyehan, R. (2001) CFD Modeling of Blood Flow Following Coil Embolization of Aneurysm, Medical Engineering & Physics, Vol. 26, pp.755-761.
[29] Hodis S, Uthamaraj S, Lanzino G, Kallmes DF, Dragomir-Daescu D. (2014) Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography. J Neurointerv Surg. 2;6:e14. doi:10.1136/neurintsurg-2012-010596.rep.
[30] Kono K, Fujimoto T, Shintani A, Terada T. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery, 71:E1202-8; discussion 1209.
[31] Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T. (2012) Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis, 2012;34:121–9.
[32] Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H. (2015) Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 83:80–6.
[33] Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM. (2015) Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg. 7:530–6.
[34] Juvela S. Risk factors for multiple intracranial aneurysms. Stroke, 2000;31:392-397.
[35] Utter B, Rossmann BS. Numerical simulation of saccular aneurysm hemodynamics: Influence of morphology on rupture risk. Journal of Biomechanics, 2007;40:2716-2722.
[36] Dhar S, Tremmel M, Mocco J, Kim M, Yamamptp J, Siddiqui AH, Hopking LN. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery, 2008;63 (2):185-196.
[37] Marzo A, Singh P, Larrabide I, Radaelli A, Coley S, Gwilliam M, Wilkinson ID, Lawford P, Reymond P, Patel U, Frangi A, Hose R. Computational hemodynamics in cerebral aneurysm: the effects of modeled versus measured boundary conditions. Annals of Biomedical Engineering, 2011;39:884-896.
[38] Mantha AR, Benndorf G, Hernandz A, Metcalfe RW (2009) Stability of pulsatile blood flow at the ostium of cerebral aneurysms. Journal of Biomechanics, 42:1081-1087.
[39] Mantha AR, Benndorf G, Hernandz A, Metcalfe RW (2009) Stability of pulsatile blood flow at the ostium of cerebral aneurysms. J Biomech, 42:1081–1087.
[40] Ford MD, Alperin N, Lee SH, Holdsworth DW, Steinman DA (2005) Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Phys Meas, 26:477– 488.
[41] Takizawa K, Tezduyar TE (2014) Fluid-structure interaction modeling of patient-specific cerebral aneurysms. Visualization and Simulation of Complex Flows in Biomedical Engineering, Lecture Notes in Computational Vision and Biomechanics, 12 doi:10. 1007/978-94-007-7769-9-2.
[42] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Spacetime finite element computation of arterial fluid-structure interaction with patient-specific data. Int J Numer Methods Biomed Eng, 26:101–116.
[43] Chopard, B., Ouared, R., Ruefenacht, D.A., and Yilmaz, H., (2007). Lattice Boltzmann Medoling of Thrombosis in Giant Aneurysms, International Journal of Modern Physics C, 18(4):712-721.
[44] Bell, D.N., Spain, S. and Goldsmith H. L. (1989). Adenosine diphosphate-induced aggregation of human platelets in flow through tubes i. measurement of concentration and size of single platelets and aggregations. Biophy, J., 56(5):817-828.
[45] Bell, D.N., Spain, S. and Goldsmith H. L. (1989). Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. ii. Effect of shear rate, donor sex, and adp concentration. Biophy, J., 56(5):829-843.
[46] Etminan N, Beseoglu K, Steiger HJ, Hanggi D. The impact of hypertension and nicotine on the size of ruptured intracranial aneurysms. J Neurol Neurosurg Psychiatry 2011;82:4-7.
[47] Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysm. Annu Rev Fluid Mech, 2009;41:91-107.
[48] Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada., K, Morita, A. and Kirino T. (2004). Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke, 35:2500-2505.
[49] Jou, L. D., Lee, D. H., Morsi, H. and Mawad, M. E. (2008). Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol, 29:1761-1767.
[50] T Tateshima S, Tanishita K, Omura H, Villablanca JP, Vinuela F. (2007). Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: In vitro study using longitudinal ct angiogram database. AJNR Am J Neuroradiol. 28:622-627.
[51] Valencia, A., Morales, H., Rivera, R., Bravo, E. and Galvez, M. (2008). Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index. Med Eng Phys, 30:329-340.
[52] Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk. J Neurosurg, 2005;102:355-362.
[53] Ujiie H, Tamano, Y, Sasaki K, Hori T. (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm. Neurosurgery 2001;48:495-503.
[54] Ma B, Harbaugh RE, Raghavan ML. (2004) Three-Dimensional Geometrical Characterization of Cerebral Aneurysms. Annals of Biomedical Engineering, 32:264-273.
[55] Jain AK. (2010) 50 years beyond K-means Pattern Recognition Letters. 19th International Conference in Pattern Recognition (ICPR), 31:651-666.
[56] Juvela S, Hillbom M, Numminen H, Koskinen P. (1993) Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke, 24:639-646.
[57] Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, Hopkins LN. (2004) Effects of arterial geometry on aneurysm growth: Three-dimensional computational fluid dynamics study. J Neurosurg, 101.
[58] Beck J, Rohhde S, Berkefeld J, Seifert V, Raabe A.(2006) Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg Neurol, 65:18-27.
[59] Boussel, L., Rayz, V., McCulloch, C., Martin, A., Acevedo-Bolton, G., Lawton, M., Higashida, R., Smith, W.S., Young, W.L. and Saloner, D. (2008). Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 39:2997-3002.
[60] Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32: 145–151.
[61] Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42: 144–152.
[62] Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata K., Shirouzu, I., Morita, A. and Kirino T. (2005). Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke, 36:1933-1938.
[63] Perktold, K, Peter R, Resch, M, (1989) Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26 (6), 1011–1030.
[64] He XJ, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation : average conditions. Journal of Biomechanical Engineering-Transactions of the Asme 118:74-82.
[65] Im, S. H., Oh, C. W., Hong, S. K., Kwon, O. K., Kim, S. H. (2007). Ct angiography demonstration of the development of intraventricular hemorrhage during aneurysm rupture. Clin Neurol Neurosurg, 109:299-301.
[66] Holodny, A. I., Farkas, J., Schlenk, R. and Maniker, A. (2003). Demonstration of an actively bleeding aneurysm by ct angiography. AJNR Am J Neuroradiol, 24:962-964.
[67] Perez-Nunez, A., Alen, J. F., Ramos, A. and Millan, J.M. (2006). Aneurysm re-rupture during computed tomography angiography. Acta Radiol, 47:419-421.