研究生: |
黃承毓 Huang, Cheng Yu |
---|---|
論文名稱: |
應用於物聯網之支援大量連結雙正交分頻多工之波形設計 Pulse Shape Design of Biorthogonal Frequency Division Multiplexing with Massive Connection Support for IoT |
指導教授: |
吳仁銘
Wu, Jen Ming |
口試委員: |
蔡育仁
Tsai, Yu Jen 翁詠祿 Weng, Yung Lu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 正交分頻多工 、雙正交分頻多工 、模稜函數 、物聯網 |
外文關鍵詞: | OFDM, BFDM, Ambiguity Function, Internet of Thing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
未來,因為自動互連裝置數量快速成長,物聯網將會是第五代行動通訊無線網路系統中不可或缺的一部分。物聯網最主要的挑戰是大量連接的議題。論文中我們降低符際與載波間干擾效應為了提高在時頻分散通道中物聯網裝置可負荷的數量利用最佳化雙正交分頻多工技術的效能。雙正交分頻多工技術是發明來降低干擾透過一個有彈性的訊號波形設計,我們採用具有良好特性降低干擾的B 樣條和高斯波形和使用名為典型高柏視窗計算接收波形。特別是我們最佳化雙正交分頻多工高斯波形利用最小化尾模稜函數。模擬結果顯示所提出的雙正交分頻多工勝過傳統正交分頻多工在干擾能量、訊號干擾比及物聯網裝置的負載量於時頻分散通道。本論文提出的雙正交分頻多工不僅達到降低干擾,並同時增加系統可支援的裝置數量。
In future, Internet-of-Thing (IoT) will be the indispensable part of development of 5G wireless communication system due to rapid growth of devices with an ability to communicate autonomously. The major challenge is massive connection issue. In this thesis, we reduce intersymbol interference (ISI) and intercarrier interference (ICI) for enhancing the number of IoT devices in high mobile environment by optimizing the performance of Biorthogonal Frequency Division Multiplexing (BFDM). BFDM is invented to reduce the interference through a flexible design of the signal pulse shaping. We apply B-splines and Gaussian pulse for pulse shape which have good properties to reduce ISI/ICI and use an algorithm named canonical Gabor tight window to calculate receive pulses. In particular, we optimize Gaussian pulse in BFDM by minimizing the tail of the ambiguity function. Simulation results show that the proposed BFDM outperforms the conventional OFDM in ISI/ICI power, SIR and the IoT devices load in time-frequency dispersive channels. BFDM not only achieves the reduction of interference, but also increases the number of devices which system could support.
[1] Y. H. Hu, “Using FFT/IFFT structure for inceasing spectrul efficiency of LTE bandwidth
in OFDM,” in Communication Components Magazine, April 2014.
[2] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. Johnson, “M2M: From mobile to
embedded internet,” IEEE Communications Magazine, vol. 49, pp. 36 – 43, April 2011.
[3] I.-T. S. G. 13, “Itu-t y. 2060, overview of the internet of things,” in Telecommnication
Standardization Sector of ITU, pp. 1–14, June 2015.
[4] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar,
N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk,
B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms
for future mobile applications,” IEEE Commun. Mag., vol. 52, pp. 97 – 105,
February 2014.
[5] F. Schaich and T. Wild, “Waveform contenders for 5G —OFDM vs. FBMC vs. UFMC,”
in Proceedings of 6th International Symposium on Communications, Control and Signal
Processing (ISCCSP 2014), pp. 457 – 460, 2014.
[6] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational
complexity algorithms,” Proc. IEEE ICASSP, vol. 5, pp. 964–967, April 1980.
[7] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” Signal Processing Magazine,
IEEE, vol. 28, pp. 92 – 112, 2011.
[8] M. Bellanger, “Physical layer for future broadband radio systems,” in Radio and Wireless
Symposium (RWS), 2010 IEEE, pp. 436 – 439, 2010.
[9] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, “Universal-filtered
multi-carrier technique for wireless systems beyond lte,” in 9th Int’l. Wksp. Broadband
Wireless Access, IEEE GLOBECOM’13, pp. 223 – 228, 2013.
[10] W. Kozek and A. Molisch, “Nonorthogonal pulseshapes for multicarrier communications
in doubly dispersive channels,” IEEE Journal, Selected Areas in Communications,
vol. 16, no. 8, pp. 1579–1589, October 1998.
[11] D. Schafhuber, G. Matz, and F. Hlawatsch, “Pulse-shaping OFDM/BFDM systems for
time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation,”
in Proc. IEEE PIMRC-02, pp. 1012–1016, September 2002.
[12] M. Kasparick, G. Wunder, G. Wunder, P. Jung, and D. Maryopi, “Bi-orthogonal waveforms
for 5G random access with short message support,” in Proc. of the European
Wireless Conf., pp. 293 – 298, May 2014.
[13] K. Ashton, “That‘internet of things’thing, in the real world things matter more than
ideas,” in RFID Journal, June 2009.
[14] C. M. University, “The ”only” coke machine on the internet,” in Carnegie Mellon University,
November 2014.
[15] Q. S. Fraser, “The trojan room coffee pot,” in University of Cambridge, May 1995.
[16] Y. Mehmood, N. Haider, W. Afzal, U. Younas, I. Rashid, and M. Imran, “Impact
of massive MIMO systems on future M2M communication,” in 2013 IEEE Malaysia
International Conference ,Communications (MICC), pp. 534 – 537, November 2013.
[17] I.-R. Group, “Report m. 2134, requirements related to technical performance for imtadvanced
radio interface(s),” in ITU Radiocommunication Sector, pp. 1–8, November
2008.
[18] H. Bolcskei and F. Hlawatsch, “Discrete zak transforms, polyphase transforms, and
applications,” IEEE Trans., Signal Processing, vol. 45, pp. 851–866, April 1997.
[19] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans.
Commun. Syst., vol. CS-11, pp. 360–393, December 1963.
[20] F.-M. Han and X.-D. Zhang, “Wireless multicarrier digital transmission via weylheisenberg
frames over time-frequency dispersive channels,” IEEE Trans. Communications,
vol. 57, pp. 1721 – 1733, June 2009.
[21] J. Proakis and M. Salehi, Digital Communications. McGraw-Hill Education, 2008.
[22] M. Zibulski and Y. Zeevi, “Oversampling in the gabor scheme,” IEEE Trans. Signal
Processing, vol. 41, pp. 2679–2687, August 1993.
[23] P. Sondergaard, “Efficient algorithms for the discrete gabor transform with a long FIR
window,” Journal of Fourier Analysis and Applications, vol. 18, no. 3, pp. 456–470,
2012.
[24] K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser Basel, 2001.