簡易檢索 / 詳目顯示

研究生: 邱麒維
Chi-Wei Chiou
論文名稱: 聚乙二醇-聚癸二酸酐自我組裝之奈米顆粒於藥物控制釋放之研究
Novel Nanoparticles Formed via Self-Assembly of Poly(ethylene glycol-b-sebacic anhydride) for controlled drug delivery system
指導教授: 朱一民
I-MING CHU
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚酸酐生物可分解高分子熔融縮合反應雙團聯共聚物紫杉醇藥物制放
外文關鍵詞: polyanhydrides, biodegradable polymer, melt-condensation, diblock copolymer, paclitaxel, controlled drug delivery system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚酸酐為用酸酐鍵結而成之高分子材料,具有生物可分解性和生物相容性的性質,且尤其具有表面降解的特性,當做藥物載體時有良好、易控制釋放的優點而廣受到醫藥學界的重視。
    我們藉由熔融縮合的方法成功的合成出聚乙二醇-聚癸二酸酐二團聯共聚物。團聯共聚合物所使用材料的癸二酸和聚乙二醇都已經被FDA認可准許使用在人體內。聚癸二酸是一種疏水性的高分子,它跟聚乙二醇共聚合之後提供了一個很好的包覆疏水性藥物的環境以及在水相環境下有很好的藥物控制釋放機制。此外在藥物釋放系統裡面,聚乙二醇是一種被廣泛使用的親水性高分子,其主要的功能在於可以避免微胞粒子被巨噬細胞吞噬。在本文當中,我們將利用不同比例的聚乙二醇/聚癸二酸酐進料比,控制高分子的親疏水比例並探討此高分子之特性的差別。目前製備出三種不同親疏水比的共聚合物其分子量介於9500到14500之間,而且在聚癸二酸酐的進料比例較高的時候,其高分子的分子量也比較大。這樣的兩性高分子可藉由在水溶液中自我組裝的機制,形成具有奈米等級的高分子微胞顆粒,我們利用溶劑置換法去製備高分子微胞,其大小分佈在100到150nm之間,且疏水鏈段越長其所形成的微胞顆粒就會越大。在包覆疏水性抗癌藥物紫杉醇之後,微胞粒徑並沒有很大的差別。利用SEM觀察微胞的型態發現微胞是呈現球型的形狀。在材料降解的方面,由於聚酸酐對於水跟溫度的不穩定性,所以在37℃緩衝溶液下的降解是很快速的,在培養箱6個小時之後,不管哪一種比例的微胞皆有30~40%比例的材料被降解掉,之後的降解則會趨於緩慢,降解5天之後,約有70~80%的材料會被降解。
    本研究是製備奈米微胞去包覆疏水性抗癌藥物--紫杉醇。紫杉醇亦稱為紅豆杉醇,乃從太平洋紫杉(Taxus brevifolia)的樹皮、葉片或是枝幹中萃取出來。在臨床測試中已經證實紫杉醇可以有效的治療一些惡性腫瘤,例如:轉移性乳癌、卵巢癌。
    藥物包覆效率的結果,疏水鏈段較短的團聯聚合物所做成的微胞的包覆效率最好,包覆效率為41.51±0.71%。體外模擬藥物釋放速率結果,發現到一開始有很大的突然釋放(initial burst)的情形,會有這樣的情況可能是因為有很多的藥物其實只是卡在或是被包埋在較接近微胞表面孔洞的位置,所以很容易被釋放出來而造成一開始釋放很快。之後的釋放則較為緩慢,大約在5天之後會完全釋放完畢。綜合上面的結果,我們所製備的高分子微胞可以應用在短效的局部抗癌的治療上面。


    A series of biodegradable poly (ester-anhydride), Poly(sebacic anhydride-co-ethylene glycol), was prepared by melt condensation for use in advanced drug delivery applications. Sebacic acid, a hydrophobic monomer, was copolymerized with PEG in order to produce water-insoluble polymers capable of providing continuous drug release kinetics following immersion in an aqueous environment. Poly ethylene glycol(PEG) can reduce particle clearance from bloodstream by macrophages and was a FDA approved polymer. In this paper, we changed various amounts of PEG (15~35% by mass) incorporated into the backbone of the polymers to allow tuning of particle surface properties.
    The diblock copolymers were synthesized with the molecular weight range of 9,500~14,500 Da without any catalyst. Copolymers of higher molecular weights were obtained by increasing poly (sebacic anhydride) content.
    The self-assembly of this water-insoluble diblock copolymer formed nanoparticles by solvent displacement method. The mean diameters of micelles were less than 200nm and exhibited low polydispersity index.
    The degradation of polymeric micelles was studies by measuring the sebacic acid concentration in phosphate buffer. The result showed that a rapid degradation occurred during first 6 hr, followed by a slow degradation. After 5 days, about 70~80% of polymeric micelles core were degraded.
    The drug encapsulation efficiency and the in vitro drug release kinetics were measured by high-performance liquid chromatography (HPLC). Of all, the entrapment efficiency of taxol-loaded micelles were 10.31~40.51%. The longer hydrophobic chain was, the lower its entrapment efficiency was. The drug release from mPEGPSA nanoparticle was found to be biphasic with an initial burst of 60~70% during the first 2hr, followed by a sustained release with 100% accumulative drug release after 5 days.

    摘要 Ⅰ Abstract Ⅲ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 X 第一章 文獻回顧 1 1-1 生醫材料 1 1-2 生物可分解性高分子 2 1-2-1影響生物可分解性的因素 4 1-3 聚酸酐 6 1-3-1聚酸酐材料歷史簡介 7 1-3-2 聚酸酐的合成 8 1-3-3 聚酸酐材料的降解機制 9 1-3-4 近年來聚酸酐發展出來的結構 10 1-3-5 聚酸酐材料的優缺點 11 1-3-6 聚酸酐降解和侵蝕 13 1-3-7 聚酸酐的應用 16 1-4藥物傳遞系統的目的 16 1-4-1 控制藥物釋放系統的優點 18 1-4-2高分子控制藥物釋放系統的機制 18 1-4-3藥物輸送的標的作用 20 1-5 紫杉醇的來源及作用機制 22 第二章 研究動機與目的 25 第三章 實驗部份 28 3-1實驗流程 28 3-2實驗藥品 29 3-3實驗儀器 30 3-4實驗方法 31 3-4-1酸酐化sebacic acid (preSA) 31 3-4-2聚乙二醇(mPEG-OH)改質 32 3-4-3合成不同親疏水比的 mPEG-PSA雙團聯共聚合 33 3-4-4高分子結構、官能基及分子量鑑定方法 33 3-4-5 mPEG-PSA的臨界微胞濃度(CMC)之量測 35 3-3-6利用solvent displacement method製備高分子微胞(polymeric micelles)及其高分子微胞降解測試 35 3-4-7 高分子微胞表面的化學結構及其外觀型態(morphology)的分析 36 3-4-8 利用高分子微胞包覆疏水性抗癌藥物紫杉醇(palictaxel)及其藥物釋放測試 37 3-4-9 高分子微胞及包覆藥物之後的微胞在37℃下粒徑的穩定度測試 38 第四章 結果與討論 39 4-1 mPEG-PSA團聯共聚物結構鑑定及性質量測 39 4-1-1預聚酸酐pre-SA 39 4-1-2 mPEG-OH改質成mPEG-COOH 40 4-1-3 mPEG-PSA結構鑑定 42 4-1-4 GPC分析結果 45 4-1-5 DSC分析結果 46 4-2 mPEG-PSA團聯共聚物的CMC測定 49 4-3高分子微胞及其冷凍乾燥後的粒徑分析 52 4-4高分子微胞之表面結構分析與外觀型態 54 4-5高分子微胞的降解測試及其在37℃下的穩定性測試 58 4-6包覆Taxol的微胞的藥物釋放測試及其37℃下的穩定性測試 61 第五章 結論與未來展望 66 第六章 參考文獻 69 附錄 72

    【1】Clemson Advisory Board for Biomaterials “Definition of the word biomaterial, Thc 6th Annnal Intermalionel Biomaterial Symposium, 1974, p20-24.
    【2】Orloff L.A., Domb A.J., Teomim D., Fishbein I., Golomb G., Advanced Drug Delivery Reviews, 24, 1997, p3–9.
    【3】Shikanov A., Kumar N., Abraham, Domb A.J., Israel Journal of Chemistry, 45, 2005, p393–399.
    【4】Teomim D., Mader K., Bentolila A., Magora A, Domb, A. J. , Biomacromolecules , 2, 2001, p1015–1022.
    【5】Shikanov A., Vaisman B., Krasko, M.Y., Nyska A., Domb A.J., Journal of Biomedical Materials Research Part A, 69A, 2004, p47–54.
    【6】 Jay P. J., Sweta Modia, Domb A.J., Kumar N., Journal of Controlled Release, 103, 2005, p541–563.
    【7】Hill J.W., J. Am. Chem. Soc., 52, 1930, p4110–4114.
    【8】Rosen H.B., Chang J., Wnek G.E., Linhardt R.J., Langer R., Biomaterials,4, 1983, p131-133.
    【9】Kumar N., Langer R., Domb A.J., Advanced Drug Delivery Review, 54, 2002, p889-910.
    【10】 Katti D.S., Lakshmi S., Langer R., Laurencin C.T., Advanced Drug Delivery Reviews, 54, 2002, p933–961.
    【11】Shieh L., Tamada J., Chen I., Pang J. ,Domb A.J., Langer R.,
    J. Biomed. Mater. Res., 28, 1994, p1465–1475.
    【12】Goepferich A., Langer R., J. Polym. Sci. Part A: Polym. Chem., 1993, 31, p2445-2458.
    【13】Gopferich A., Biomaterials, 17, 1996, p103–114.
    【14】 Gopferich A., Tessmar J., Advanced Drug Delivery Reviews, 54, 2002, p911–931.
    【15】Alekha K.D., Greggrey C, Cudworth II, Journal of Pharmacological and Toxicological Methods, 40, 1998, p1–12.
    【16】Ghosh S., Journal of chemical research, 2004, 2004, p241–246.
    【17】 Gao X., Cui Y., Levenson R.M, Chung L.W K & Nie S., Nature biotechnology, 22, 2004, p969–976.
    【18】Vicent M. J., Duncan R., TRENDS in Biotechnology, 24, 2006, p39–47.
    【19】 Georg G.I., Chen T.T., Ojima I., Vyas D.M., Am. Chem. Soc., 1995.
    【20】Tsavaris NB, Kosmas C, Cancer Chemother Pharmacol, 42, 1998, p509–511.
    【21】Gelderblom H., Verweij J., Nooter K., Sparreboom A., Eur J Cancer, 37, 2001, p1590-1598.
    【22】Zhao C.L., Winnilk M.A., Langmuir, 6, 1990, p514-516.
    【23】Molpeceres J., Guzman M., Aberturas M.R., Chacon M., Berges L., Journal of Pharmaceutical Sciences, 85, 1996, p206-213.
    【24】Cristine A., Dusica M., Eisenberg A., Colloids and Surfaces:Biointerfaces, 16, 1999, p 3-27.
    【25】Zhang N., Guo S., Li H.Q., Liu L., Li Z.H., Gu J. R.,Macromol. Chem. Phys., 207, 2006, p1359-1367.
    【26】Shakweh M., Besnard M., Nicolas V., Fattal E., European Journal of Pharmaceutics and Biopharmaceutics, 61, 2005, p1–13.
    【27】Saez A., Guzmán M., Molpeceres J., Aberturas M.R.,European Journal of Pharmaceutics and Biopharmaceutics, 50, 2000, p379-387.
    【28】Uchegbu I.F., Pharmaceutical Journal, 263, 1999, p309-318.
    【29】 Niwa T., Takeuchi H., Hino T., Kunou N., Kawashima Y., Journal of Controlled Release, 25, 1993, p89-98.
    【30】Wang J., Wang B.M., Schwendeman S.P., Journal of Controlled Release, 82, 2002, p289-307.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE