簡易檢索 / 詳目顯示

研究生: 吳昊儒
Wu, Hao-Ru
論文名稱: 扭轉雙層石磨烯的異常朗道能階
Anomalous Landau levels in twisted bilayer graphene
指導教授: 牟中瑜
Mou, Chung-Yu
口試委員: 張明哲
Chang, Ming-Che
仲崇厚
Chung, Chung-Hou
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 62
中文關鍵詞: 魔角石墨烯霍夫施塔特蝴蝶朗道能階半古典分析拓樸相變異常朗道能階
外文關鍵詞: magic angle twisted bilayer graphene, Hofstadter's butterfly, Landau level, semi-classical analysis, topological phase transition, anomalous Landau levels
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討魔角扭轉雙層石墨烯之朗道能階。當我們關掉扭轉雙層石墨烯在AA堆疊區域層與層之間的耦合,系統會呈現額外的手徵對稱性並展現出完美的平帶。朗道能階來自於系統本身被量子化的迴旋軌道對應到的能量,所以朗道能階的範圍通常被侷限在系統還沒有外加磁場的能帶範圍內。然而軌道的磁矩,對應到系統能帶間的耦合,產生額外的迴旋軌道使得異常的朗道能階出現在原本的能帶外。
    我們以朗道能階的基底展開連續模型來獲得其朗能階。我們發現滿足手徵對稱性的扭轉雙層石墨烯的能帶間耦合被其手徵對稱性和時間-空間反衍對稱性限制為零。我們提出一量值為純虛數的耦合,發生於上層的A(B)原子和下層的A(B)原子間。其可對應到一具有周期且局域的規範勢存在於扭轉雙層石墨烯的AA堆疊區域。此耦合破壞了時間-空間反衍對稱性,並展現出了異常的朗道能階結構,其結果符合經過考慮軌道磁化的半古典(semi-classical)量子化條件。


    We investigate the Landau levels in magic angle twisted bilayer graphene (TBG). In TBG, the system preserves additional chiral symmetry and exhibits an exact flat band structure when interlayer tunneling within the AA stacked region vanishes. Landau levels arise from the energy of quantized cyclotron orbits, which are typically limited by the non-magnetic energy bounds. However, the orbital magnetic moment, which characterizes the inter-band coupling, leads to the formation of additional cyclotron orbits and results in the anomalous spreading of Landau levels outside these non-magnetic energy bounds.
    We obtained the Landau levels by expanding the continuum model in the Landau level basis. Anomalous Landau level spreading is prohibited in chiral twisted bilayer graphene (CTBG) since the inter-band coupling is constrained by the chiral and C2T (space-time inversion) symmetry. However, we propose a fully imaginary interlayer tunneling between A(B) atoms in the top layer and A(B) atoms in the bottom layer, which can be induced by a periodic gauge potential localized within AA stacked regions. This interlayer tunneling breaks the C2T symmetry, making the anomalous Landau level spreading visible. Our results are consistent with the semi-classical quantization condition when considering the orbital magnetization.

    Abstract (Chinese) I Abstract II Acknowledgements III Contents IV List of Figures VI 1 Introduction 1 2 Graphene 8 3 Twisted bilayer graphene 12 3.1 The Bistritzer-MacDonald model . . . . . . . . . . . . . . . . 12 3.2 TBG energy spectrum . . . . . . . . . . . . . . . . . . . . . 18 3.3 The chiral model . . . . . . . . . . . . . . . . . . . . . . . 19 4 Landau levels in TBG 25 4.1 Hofstadter spectrum in TBG . . . . . . . . . . . . . . . . . . 25 4.2 Results for Hofstadter butterfly . . . . . . . . . . . . . . . 29 4.3 Semi-classical approach . . . . . . . . . . . . . . . . . . . 31 4.3.1 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Semi-classical Landau level . . . . . . . . . . . . . . . . . 38 5 Anomalous Landau level 41 5.1 Orbital magnetic moment . . . . . . . . . . . . . . . . . . . 41 5.2 Symmetry constraint . . . . . . . . . . . . . . . . . . . . . 44 5.2.1 Symmetries in CTBG . . . . . . . . . . . . . . . . . . . . 45 5.2.2 Chiral (C) symmetry . . . . . . . . . . . . . . . . . . . . . 46 5.2.3 Space-time inversion (C2T) symmetry . . . . . . . . . . . . 48 5.2.4 Chiral space-time inversion (CST ) symmetry . . . . . . . . . 50 5.3 Anomalous Landau level in CST symmetry TBG . . . . . . . . . . 51 6 Conclusion and outlook 57 Bibliography 59

    [1] Noriaki Hamada, Shin-ichi Sawada, and Atsushi Oshiyama. New onedimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 68:1579–
    1581, Mar 1992.
    [2] KS Novoselov, SV Morozov, TMG Mohinddin, LA Ponomarenko,
    Daniel Cunha Elias, Rong Yang, II Barbolina, P Blake, TJ Booth, D Jiang,
    et al. Electronic properties of graphene. physica status solidi (b),
    244(11):4106–4111, 2007.
    [3] Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi, and Toshiaki
    Enoki. Electronic states of graphene nanoribbons and analytical solutions.
    Science and technology of advanced materials, 11(5):054504, 2010.
    [4] Hoi Chun Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil. Origin of Mott
    Insulating Behavior and Superconductivity in Twisted Bilayer Graphene.
    Phys. Rev. X, 8:031089, Sep 2018.
    [5] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
    Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699):43–50, 2018.
    [6] Rafi Bistritzer and Allan H MacDonald. Moir´e bands in twisted double-layer
    graphene. Proceedings of the National Academy of Sciences, 108(30):12233–
    12237, 2011.
    [7] Mikito Koshino, Noah F. Q. Yuan, Takashi Koretsune, Masayuki Ochi,
    Kazuhiko Kuroki, and Liang Fu. Maximally Localized Wannier Orbitals and
    the Extended Hubbard Model for Twisted Bilayer Graphene. Phys. Rev. X,
    8:031087, Sep 2018.
    [8] Daniel T. Larson, Stephen Carr, Georgios A. Tritsaris, and Efthimios Kaxiras.
    Effects of lithium intercalation in twisted bilayer graphene. Phys. Rev. B,
    101:075407, Feb 2020.
    [9] Shiang Fang, Stephen Carr, Ziyan Zhu, Daniel Massatt, and Efthimios Kaxiras. Angle-Dependent {\it Ab initio} Low-Energy Hamiltonians for a Relaxed
    Twisted Bilayer Graphene Heterostructure. arXiv preprint arXiv:1908.00058,
    2019.
    [10] Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath. Origin
    of Magic Angles in Twisted Bilayer Graphene. Phys. Rev. Lett., 122:106405,
    Mar 2019.
    [11] Fedor K. Popov and Alexey Milekhin. Hidden wave function of twisted bilayer
    graphene: The flat band as a Landau level. Phys. Rev. B, 103:155150, Apr
    2021.
    [12] Patrick J. Ledwith, Grigory Tarnopolsky, Eslam Khalaf, and Ashvin Vishwanath. Fractional Chern insulator states in twisted bilayer graphene: An
    analytical approach. Phys. Rev. Res., 2:023237, May 2020.
    [13] Kasra Hejazi, Chunxiao Liu, Hassan Shapourian, Xiao Chen, and Leon Balents. Multiple topological transitions in twisted bilayer graphene near the
    first magic angle. Phys. Rev. B, 99:035111, Jan 2019.
    [14] Zhida Song, Zhijun Wang, Wujun Shi, Gang Li, Chen Fang, and B. Andrei
    Bernevig. All Magic Angles in Twisted Bilayer Graphene are Topological.
    Phys. Rev. Lett., 123:036401, Jul 2019.
    [15] Hoi Chun Po, Liujun Zou, T. Senthil, and Ashvin Vishwanath. Faithful tightbinding models and fragile topology of magic-angle bilayer graphene. Phys.
    Rev. B, 99:195455, May 2019.
    [16] R. Bistritzer and A. H. MacDonald. Moir´e butterflies in twisted bilayer
    graphene. Phys. Rev. B, 84:035440, Jul 2011.
    [17] Kasra Hejazi, Chunxiao Liu, and Leon Balents. Landau levels in twisted
    bilayer graphene and semiclassical orbits. Phys. Rev. B, 100:035115, Jul 2019.
    [18] Ya-Hui Zhang, Hoi Chun Po, and T. Senthil. Landau level degeneracy
    in twisted bilayer graphene: Role of symmetry breaking. Phys. Rev. B,
    100:125104, Sep 2019.
    [19] Yarden Sheffer and Ady Stern. Chiral magic-angle twisted bilayer graphene
    in a magnetic field: Landau level correspondence, exact wave functions, and
    fractional Chern insulators. Phys. Rev. B, 104:L121405, Sep 2021.
    [20] Nadia Benlakhouy, Ahmed Jellal, Hocine Bahlouli, and Michael Vogl. Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer
    graphene. Phys. Rev. B, 105:125423, Mar 2022.
    [21] Lars Onsager. Interpretation of the de Haas-van Alphen effect. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
    43(344):1006–1008, 1952.
    [22] Yang Gao and Qian Niu. Zero-field magnetic response functions in Landau
    levels. Proceedings of the National Academy of Sciences, 114(28):7295–7300,
    2017.
    [23] Ming-Che Chang and Qian Niu. Berry Phase, Hyperorbits, and the Hofstadter
    Spectrum. Phys. Rev. Lett., 75:1348–1351, Aug 1995.
    [24] Michael Wilkinson and Ritchie J. Kay. Semiclassical Limits of the Spectrum
    of Harper’s Equation. Phys. Rev. Lett., 76:1896–1899, Mar 1996.
    [25] Hideo Aoki, Masato Ando, and Hajime Matsumura. Hofstadter butterflies for
    flat bands. Phys. Rev. B, 54:R17296–R17299, Dec 1996.
    [26] Zheng Liu, Feng Liu, and Yong-Shi Wu. Exotic electronic states in the world
    of flat bands: From theory to material. Chinese Physics B, 23(7):077308, may
    2014.
    [27] Doron L. Bergman, Congjun Wu, and Leon Balents. Band touching from
    real-space topology in frustrated hopping models. Phys. Rev. B, 78:125104,
    Sep 2008.
    [28] Dawei Kang, Zheng-wei Zuo, Weiwei Ju, and Zhaowu Wang. Emergence of flat
    bands in twisted bilayer C3N induced by simple localization and destructive
    interference. Phys. Rev. B, 107:085425, Feb 2023.
    [29] Jun-Won Rhim and Bohm-Jung Yang. Classification of flat bands according to the band-crossing singularity of Bloch wave functions. Phys. Rev. B,
    99:045107, Jan 2019.
    [30] Jun-Won Rhim and Bohm-Jung Yang. Singular flat bands. Advances in
    Physics: X, 6(1):1901606, 2021.
    [31] Jun-Won Rhim, Kyoo Kim, and Bohm-Jung Yang. Quantum distance and
    anomalous Landau levels of flat bands. Nature, 584(7819):59–63, 2020.
    [32] Yoonseok Hwang, Jun-Won Rhim, and Bohm-Jung Yang. Geometric characterization of anomalous landau levels of isolated flat bands. Nature communications, 12(1):6433, 2021.
    [33] Ming-Che Chang and Qian Niu. Berry phase, hyperorbits, and the Hofstadter
    spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B,
    53:7010–7023, Mar 1996.
    [34] Edward McCann. Electronic properties of monolayer and bilayer graphene. In
    Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications,
    pages 237–275. Springer, 2012.
    [35] Jiamin Xue. Berry phase and the unconventional quantum Hall effect in
    graphene. arXiv preprint arXiv:1309.6714, 2013.
    [36] JN Fuchs, F Pi´echon, MO Goerbig, and G Montambaux. Topological
    Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models. The European Physical Journal
    B, 77(3):351–362, 2010.
    [37] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. Chern numbers in
    discretized Brillouin zone: efficient method of computing (spin) Hall conductances. Journal of the Physical Society of Japan, 74(6):1674–1677, 2005.

    QR CODE