簡易檢索 / 詳目顯示

研究生: 劉奕伶
Liu, Yi-Ling
論文名稱: 鐵酸鉍與二氧化鈦核殼奈米結構之壓電觸媒活性在有機染料分子之研究
Study on Piezocatalytic Activity of BiFeO3/TiO2 Core-Shell Nanostructures for Degradation of Organic Dye Molecules
指導教授: 吳志明
Wu, Jyh-Ming
口試委員: 陳學仕
Chen, Hsueh-Shih
林宗宏
Lin, Zong-Hong
蘇俊瑋
Su, Chun-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 106
中文關鍵詞: 鐵酸鉍異質結構壓電觸媒光觸媒極化染料降解
外文關鍵詞: piezocatalysis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用水熱法合成具R3c結構之鐵酸鉍微米顆粒並將其球磨至奈米尺度,接著運用一被許多文獻採用的溶膠凝膠法合成鐵酸鉍-二氧化鈦核殼奈米結構。在降解染料實驗中,固定其他條件下,具有核殼結構的效果優於鐵酸鉍粉末;經過外加電場極化後的降解效率明顯高於未經極化之對照組: 經極化後的奈米核殼結構,其光觸媒降解程度約為未極化對照組之300 % 、 協同作用下壓電/光觸媒降解程度約為未極化對照組之200 %; 而在壓電催化及光催化之協同作用下,增強極化之鐵酸鉍-二氧化鈦奈米複合材料可在兩小時內降解10 ppm甲基紫溶液幾近完全,效果遠高於單獨壓電降解或光降解: 協同之壓電/光觸媒降解程度約為壓電降解之220 %、光降解之160 %,反應速率常數更是提升至壓電降解及光降解之500 %。利用螢光效應光譜儀(FL)的分析鑑定,也發現氫氧自由基的訊號隨著初始粉末量的及反應時間的提升而提升,因此我們可以確認在降解過程中確實存在氫氧自由基並且具有降解染劑之能力。外加電場極化步驟使得晶體內鐵電域轉為一致方向因此增強極化;加上具有高比表面積的異質結構形成合適能帶結構,加速表面載子的轉移;以及超音波週期性的震盪防止樣品表面電荷趨於中和,上述方法皆可降低再結合率驅使電子電洞對和溶液反應產生具高度氧化力的自由基,進而降解甲基紫染料溶液,可望其在高效能觸媒領域的潛在能力及應用。


    BiFeO3 microparticles with space group of R3c were prepared by hydrothermal process and ball-milled into nanoparticles to proceed with the synthesizing step for heterostructure. BiFeO3/TiO2 core-shell heterostructure was synthesized through a well-adapted sol-gel method. Under synergistic ultrasonification and light irradiation, polarization-enhanced BiFeO3/TiO2 core-shell structured nanocomposites almost achieved 100 % piezo/photo-catalytic degradation ratio for methyl violet dye solution of 10 ppm within 2 h. The synergy of piezo/photo-catalysis outperformed the piezocatalysis by 160 % and the photocatalysis by 220 %. Moreover, the rate constant of it is about 500 % of the piezocatalysis and photocatalysis. The enhanced polarization was realized through the polling process, which took good use of the inherent ferroelectricity. Suitable band structure from the core-shell nanocomposites with high surface area boosts the surface charge transfer and the ultrasonic vibration keeps the field from saturation. These means were employed so as to reduce the recombination probability of the induced carriers, which could subsequently react with the solution to generate powerful oxidizing radicals and further dissociate organic dyes. In the flourescence photoluminescence (FL) analysis, the signals associated to hydroxyl radicals elevate with the increase of both the amount of catalysts and catalytic times. This well corroborates the importance of the powerful oxidizing agents in the degradation process. This work reveals more efficient dye degradation, utilizing polarization enhancement and synergy of mechanical vibration and light irradiation, which provides a new strategy for high performance catalytic applications.

    摘要 i Abstract iii Acknowledgements v Table of Contents vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1. Photocatalysis 4 2.1.1. Conventional photocatalytic materials 4 2.1.2. Heterojunctioned photocatalytic materials 8 2.1.3. Piezophototronic effect 11 2.2. Piezocatalysis 15 2.2.1. Principle of piezoelectric effect 15 2.2.2. The piezoelectric effect on the organic dye degradation 21 2.2.3. Piezocatalysis with perovskite materials 27 2.3. Bismuth ferrite as catalyst 30 2.3.1. Photocatalytic applications of BiFeO3 30 2.3.2. Piezocatalytic applications of BiFeO3 32 2.3.3. Pyrocatalytic applications of BiFeO3 33 2.4. Synthesis of bismuth ferrite 35 2.4.1. Sol-gel method 35 2.4.2. Hydrothermal method 38 2.4.3. Microwave hydrothermal method 44 2.4.4. Pulse laser deposition (PLD) 47 Chapter 3 Experimental Process 51 3.1 Equipment and instruments 52 3.1.1 Planetary micro ball mill 52 3.1.2 Manual hydraulic press 52 3.1.3 High voltage power supply 53 3.1.4 Xenon lamp--solar simulator 53 3.2 Synthesis and fabrication procedure 55 3.2.1 Synthesis of BiFeO3 particles via hydrothermal process 56 3.2.2 Ball-milling procedure to decrease the particle size 56 3.2.3 Synthesis of BiFeO3/TiO2 core-shell structured nanocomposites 57 3.2.4 Poling process 59 3.3 Material characterization 61 3.3.1 Wide angle X-Ray diffractometer (XRD) 61 3.3.2 X-ray photoelectron spectroscopy (XPS) 62 3.3.3 Cold field emission scanning electron microscopy (FESEM) 62 3.3.4 Spherical-aberration corrected field emission TEM & energy dispersive spectroscopy (EDS) 63 3.3.5 Laser diffraction particle size analyzer 64 3.4 Piezo/photo-catalytic application and analysis 65 3.4.1 Experimental setup 66 3.4.2 UV-Vis absorption spectroscopy 67 3.4.3 Flourescence photoluminescence spectrophotometer (FL) 67 Chapter 4 Results and Discussion 69 4.1. Characterizations for BiFeO3 MPs, BiFeO3 NPs, and BiFeO3/TiO2 NHs 69 4.1.1. X-Ray diffraction result 69 4.1.2. X-ray photoelectron spectroscopy result 71 4.1.3. FESEM analysis 73 4.1.4. TEM & EDS result 75 4.1.5. Particle size distributions 77 4.2. Piezo/photo-catalytic application and analysis 78 4.2.1. Degradation activity with different as-prepared materials 78 4.2.2. Fluorescence spectra for hydroxyl radicals trapping 85 4.3. The mechanism of polarization-enhanced synergistic piezo/photo-catalytic activity in BiFeO3/TiO2 core-shell structured nanocomposites 87 4.3.1. Photocatalytic activity 89 4.3.2. Piezocatalytic activity 91 4.3.3. Synergistic piezo/photo-catalysic activity 93 Chapter 5 Conclusion 95 Chapter 6 Future Work 97 References 99 Appendix A: Pyro-Assisted Piezocatalysis 105

    1. Jian, J., et al., Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012. 24(38): p. 5166-5180.
    2. Sarkar, A., et al., Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustainable Chemistry & Engineering, 2015. 3(9): p. 2254-2263.
    3. Wu, J., et al., Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale, 2016. 8(13): p. 7343-7350.
    4. Wu, J. M., et al., Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐ and Few‐Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
    5. Yang, W., et al., Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2–BaTiO3 Core–Shell Nanowire Photoanodes. Nano Letters, 2015. 15(11): p. 7574-7580.
    6. Masimukku, S., et al., High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy, 2018. 46: p. 338-346.
    7. Wu, J., et al., Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy, 2018. 46: p. 372-382.
    8. Wu, M.-H., et al., Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy, 2017. 40: p. 369-375.
    9. Lin, J.-H., et al., Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy, 2017. 31: p. 575-581.
    10. Yuan, Y., et al., Efficiency enhancement in organic solar cells with ferroelectric polymers. Nature Materials, 2011. 10: p. 296.
    11. Li, H., et al., Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect. Nano Letters, 2015. 15(4): p. 2372-2379.
    12. Jian, S., Z. Ping, and W. Xudong, Piezoelectric‐Polarization‐Enhanced Photovoltaic Performance in Depleted‐Heterojunction Quantum‐Dot Solar Cells. Advanced Materials, 2013. 25(6): p. 916-921.
    13. Liu, Y., et al., Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chinese Journal of Catalysis, 2017. 38(6): p. 1052-1062.
    14. Li, S., et al., Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C, 2010. 114(7): p. 2903-2908.
    15. Li, S., et al., BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. Journal of Applied Physics, 2009. 105(5): p. 054310.
    16. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    17. Konstantinou, I.K. and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
    18. Ren, W., et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental, 2007. 69(3): p. 138-144.
    19. Cataldo, S., et al., Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light. Catalysis Letters, 2018.
    20. Feng, H., M.-H. Zhang, and L. Yu, Phosphorus-Doped TiO2 Catalysts with Stable Anatase–Brookite Biphase Structure: Synthesis and Photocatalytic Performance. Journal of nanoscience and nanotechnology, 2013. 13(7): p. 4981-4989.
    21. Ran, J., et al., Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2production. Energy and environmental science, 2015. 8(12): p. 3708-3717.
    22. Zyoud, A.H., et al., CdS-sensitized TiO2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment. Journal of Hazardous Materials, 2010. 173(1): p. 318-325.
    23. Gu, S., et al., Facile synthesis of CeO2 nanoparticle sensitized CdS nanorod photocatalyst with improved visible-light photocatalytic degradation of rhodamine B. RSC Advances, 2015. 5(97): p. 79556-79564.
    24. Xue, X., et al., Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015. 13: p. 414-422.
    25. Baxter, F.R., et al., Electrically Active Bioceramics: A Review of Interfacial Responses. Annals of Biomedical Engineering, 2010. 38(6): p. 2079-2092.
    26. Arnab, M.M.B., et al., Generation of electrical energy using piezoelectric material from train wheels: Bangladesh perspective. 2014 9th International Forum on Strategic Technology (IFOST), 2014: p. 300-303.
    27. Hahn, T. and H. Klapper, Crystallographic and noncrystallographic point groups, in International Tables for Crystallography Volume A: Space-group symmetry, T. Hahn, Editor. 2002, Springer Netherlands: Dordrecht. p. 762-803.
    28. Starr, M.B. and X. Wang, Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials. Scientific Reports, 2013. 3: p. 2160.
    29. Wu, J., et al., Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO3. ACS Applied Materials & Interfaces, 2018. 10(21): p. 17842-17849.
    30. Sakashita, Y. and T. Sasaki, Perovskite oxide, process for producing the same, piezoelectric film, and piezoelectric device. 2011, Google Patents.
    31. Lin, H., et al., Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Applied Physics Letters, 2014. 104(16): p. 162907.
    32. Biswas, K., et al., Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods. Materials Chemistry and Physics, 2017. 195: p. 207-212.
    33. Hong, K.-S., et al., Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water. The Journal of Physical Chemistry Letters, 2010. 1(6): p. 997-1002.
    34. B., S.M., S. Jian, and W. Xudong, Piezopotential‐Driven Redox Reactions at the Surface of Piezoelectric Materials. Angewandte Chemie International Edition, 2012. 51(24): p. 5962-5966.
    35. Wei, L., et al., Enhancement effect in the piezoelectric degradation of organic pollutants by piezo‐Fenton process. Journal of Chemical Technology & Biotechnology, 2017. 92(1): p. 152-156.
    36. F., G., et al., Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Advanced Materials, 2007. 19(19): p. 2889-2892.
    37. Deng, J., et al., Bismuth Iron Oxide Nanoparticles as Photocatalyst for Solar Hydrogen Generation from Water. Journal of Fundamentals of Renewable Energy and Applications, 2011. 1: p. 1-10.
    38. You, H., et al., Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochemistry Communications, 2017. 79: p. 55-58.
    39. Tsai, C.-J., et al., Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. Journal of Materials Chemistry, 2012. 22(34): p. 17432-17436.
    40. Joshi, U.A., et al., Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Applied Physics Letters, 2008. 92(24): p. 242106.
    41. Pradhan, A.K., et al., Magnetic and electrical properties of single-phase multiferroic BiFeO3. Journal of Applied Physics, 2005. 97(9): p. 093903.
    42. Singh, S.K., et al., Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Applied Physics Letters, 2006. 88(16): p. 162904.
    43. Jia, D.-C., et al., Structure and multiferroic properties of BiFeO3 powders. Journal of the European Ceramic Society, 2009. 29(14): p. 3099-3103.
    44. Xie, S.H., et al., Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Applied Physics Letters, 2008. 93(22): p. 222904.
    45. Zhai, L., et al., Ferroelectric and magnetic properties in high-pressure synthesized BiFeO3 compound. Journal of Alloys and Compounds, 2011. 509(28): p. 7591-7594.
    46. Wang, X., et al., Photocatalytic activities of multiferroic bismuth ferrite nanoparticles prepared by glycol-based sol–gel process. Journal of Sol-Gel Science and Technology, 2011. 60(1): p. 1.
    47. Han, S.H., et al., Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method. Ceramics International, 2010. 36(4): p. 1365-1372.
    48. Wei, J., D. Xue, and Y. Xu, Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol–gel template process. Scripta Materialia, 2008. 58(1): p. 45-48.
    49. Jiang, J., et al., Synthesis and characterization of wafer-like BiFeO3 with efficient catalytic activity. Solid State Sciences, 2011. 13(9): p. 1779-1785.
    50. Liu, B., B. Hu, and Z. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires. Chemical Communications, 2011. 47(28): p. 8166-8168.
    51. Zhou, J.-P., et al., Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method. Materials Research Bulletin, 2012. 47(11): p. 3630-3636.
    52. Peng, J., et al., Surfactant-free hydrothermal synthesis of submicron BiFeO3 powders. Applied Physics A, 2011. 103(2): p. 511-516.
    53. Hojamberdiev, M., Morphology-controlled hydrothermal synthesis of bismuth ferrite using various alkaline mineralizers. Ceramics-Silikáty, 2009. 53(2): p. 113.
    54. Tong Gao, et al., A Review: Preparation of bismuth ferritenanoparticles and its applications in visible-light induced photocatalyses. Review on advanced materials science, 2015. 40: p. 97-109.
    55. Guo‐Qiang, T., et al., Controllable Microwave Hydrothermal Synthesis of Bismuth Ferrites and Photocatalytic Characterization. Journal of the American Ceramic Society, 2012. 95(1): p. 280-289.
    56. Xinhua, Z., et al., Microwave Hydrothermal Synthesis, Structural Characterization, and Visible‐Light Photocatalytic Activities of Single‐Crystalline Bismuth Ferric Nanocrystals. Journal of the American Ceramic Society, 2011. 94(8): p. 2688-2693.
    57. Park, J.M., Preparation and characterization of BiFeO3 thin films deposited on ITO substrates by using pulsed laser deposition. Journal of the Korean Physical Society, 2011. 59(31): p. 2537.
    58. Zavaliche, F., et al., Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transitions, 2006. 79(12): p. 991-1017.
    59. Reitz, C., et al., Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts? Nano Research, 2011. 4(4): p. 414-424.
    60. Wang, L., et al., Synthesis of pure phase BiFeO3 powders by direct thermal decomposition of metal nitrates. Ceramics International, 2013. 39: p. S221-S225.
    61. Hengky, C., et al., Evidence of high rate visible light photochemical decolourisation of Rhodamine B with BiFeO3 nanoparticles associated with BiFeO3 photocorrosion. RSC Advances, 2012. 2(31): p. 11843-11849.
    62. Wang, W., et al., Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceramics International, 2013. 39(4): p. 3511-3518.
    63. Yang, J., et al., Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis. Journal of Alloys and Compounds, 2011. 509(37): p. 9271-9277.
    64. Planetary Micro Mill PULVERISETTE 7. Available from: https://www.fritsch-international.com/sample-preparation/milling/planetary-mills/details/product/pulverisette-7-premium-line/.
    65. Han, S. and C.S. Kim, Weak ferromagnetic behavior of BiFeO3 at low temperature. Journal of Applied Physics, 2013. 113(17): p. 17D921.
    66. Titanium- Interpretation of XPS spectra. Available from: https://xpssimplified.com/elements/titanium.php.
    67. Zhu, C.-L., et al., Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics. The Journal of Physical Chemistry C, 2010. 114(39): p. 16229-16235.
    68. Gong, L., et al., Preparation and characterization of BiFeO3@Ce-doped TiO2 core-shell structured nanocomposites. Materials Science in Semiconductor Processing, 2013. 16(2): p. 288-294.
    69. Li, Y.-F. and Z.-P. Liu, Particle Size, Shape and Activity for Photocatalysis on Titania Anatase Nanoparticles in Aqueous Surroundings. Journal of the American Chemical Society, 2011. 133(39): p. 15743-15752.
    70. Wang, J., et al., Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation. The Journal of Physical Chemistry C, 2012. 116(26): p. 13935-13943.
    71. Clark, S.J. and J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Applied Physics Letters, 2007. 90(13): p. 132903.
    72. Ishibashi, K.-i., et al., Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2000. 2(3): p. 207-210.
    73. Yu, J., Q. Xiang, and M. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Applied Catalysis B: Environmental, 2009. 90(3): p. 595-602.
    74. Su, H., et al., Efficient Poling of Electro‐Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable Pyroelectric Crystals. Advanced Materials, 2012. 24(10): p. 42-47.
    75. Wu, J., N. Qin, and D. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy, 2018. 45: p. 44-51.
    76. Falconer, J. and K. Magrini Bair, Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2. Journal of catalysis, 1998. 179(1): p. 171-178.
    77. Lee, K., et al., Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catalysis today, 2004. 93: p. 81-86.
    78. Konieczny, A., et al., Catalyst development for thermocatalytic decomposition of methane to hydrogen. International journal of hydrogen energy, 2008. 33(1): p. 264-272.

    QR CODE