研究生: |
周森翔 Chou, Sen-Hsiang |
---|---|
論文名稱: |
微生物腐蝕對於除役過渡階段核電廠冷卻系統組件影響 The Impact of Microbiologically Influenced Corrosion on the Components in Coolant Systems of Nuclear Power Plant During Decommissioning Transition Phase |
指導教授: |
葉宗洸
Yeh, Tsung-Kuang |
口試委員: |
王美雅
Wang, Mei-Ya 黃俊源 Huang, Jyun-Yuan 藍貫哲 Lan, Kuan-Che |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 微生物腐蝕 、硫酸鹽還原菌 、雷射共軛焦顯微鏡 、電化學技術 |
外文關鍵詞: | Microbiologically influenced corrosion, sulfate reducing bacteria, confocal laser scanning microscopy, electrochemical technique |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
循環冷卻水系統為核電廠重要系統之一,冷卻水系統主要結構為碳鋼與304不銹鋼,有發生均勻腐蝕與局部腐蝕的可能性。對於均勻腐蝕,可利用腐蝕抑制劑進行防護與管理,而局部腐蝕如沈積物下的局部腐蝕抑或微生物腐蝕,可能造成非預期的破損進而影響運轉安全,對於微生物腐蝕對於管道系統造成的危害,在國內外也有諸多報導。目前核一廠兩座機組處於除役過渡階段,然而除役過渡階段之用過核子燃料所具有的輻射強度以及釋出之熱源,並無法讓停機過渡階段之各區域達到抑制微生物生長之條件。
故本實驗利用表面分析技術、質量損失、極化掃描和電化學阻抗譜(EIS)等電化學測量技術,研究硫酸鹽還原菌(SRB)在核電廠冷卻迴路溫度平均溫度下(40℃)與多數管材料碳鋼、熱交換管與閥件使用的304不銹鋼與出現於焊接熱影響區之敏化304不銹鋼之交互作用、腐蝕行為與電化學特徵。結果表明SRB生物膜之細胞外聚合物(EPS)形成的屏障作用將抑制碳鋼的均勻腐蝕,而當生物膜成熟後,SRB厭氧呼吸與EPS協同作用對碳鋼造成局部腐蝕。對於304不銹鋼與敏化304不銹鋼,SRB並不會直接參與腐蝕,而是代謝產生的HS-使鈍化層發生改性,使其對於腐蝕抵抗性更弱。雷射共軛焦顯微鏡(CLSM)結果也表明,SRB對於碳鋼附著力強且觀察大量菌群聚集,但在不銹鋼表面附著力非常薄弱,故認為SRB對於不銹鋼腐蝕行為為間接影響。
The coolant systems is one of the important systems in nuclear power plants, carbon steel and stainless steel as the main material of coolant systems, there is a possibility of uniform corrosion and localized corrosion. For uniform corrosion, corrosion inhibitors can be used for protection and management, and localized corrosion, such as microbiologically influenced corrosion(MIC), may cause unintended damage and then affect the safety of operation. The damage caused by MIC to piping systems has been widely reported. However, the radiation intensity and the heat source emitted from the spent under nuclear fuel during the decommissioning transition phase were not enough to inhibit the growth of microorganisms at the locations.
In this experiment, the surface analysis technique, mass change, electrochemical measurement techniques such as polarization curve and electrochemical impedance spectroscopy (EIS) were used to investigate the interaction, corrosion behavior and electrochemical characteristics of sulfate reducing bacteria (SRB) with the carbon steel, 304 stainless steel and sensitized 304 stainless steel at the average temperature of 40°C in the cooling circuit of a nuclear power plant. The results showed that the barrier formed by the extracellular polymer substance (EPS) of SRB biofilm formation would inhibit the general corrosion of carbon steel, and the anaerobic respiration of SRB and high concentration of EPS would oxidize iron and cause localized corrosion when the biofilm matured. In addition, SRB would not directly participate in the corrosion of 304SS and sensitized 304SS, but the HS - produced by metabolism would change the passivation layer and make it less resistant to corrosion. The results of CLSM also showed that SRB had strong adhesion on carbon steel and observed a lot of bacteria colonies. On the other hand, the adhesion on the surface of stainless steel was weaker and the number of bacteria observed on the surface was also lower, and consequently SRB had an indirect effect on the corrosion behavior of stainless steel.
1. 楊融華, 108 年核能安全管制及安全度評估技術能力建立-「CAMP 合作計劃下核電廠系統安全分析應用程式模式建立與驗證」. 2019.
2. Gaines, R.H., Bacterial Activity as a Corrosive Influence in the Soil. Journal of Industrial & Engineering Chemistry, 1910. 2(4): p. 128-130.
3. Kuehr, C.A.H.V.W. and L.S.v.d. Vlugt, The graphitization, of cast iron as an electrochemical process in anaerobic soils. 1934: p. 147-165.
4. Stewart, P.S. and M.J. Franklin, Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 2008. 6(3): p. 199-210.
5. Glindemann, D., et al., Phosphine by bio-corrosion of phosphide-rich iron. Environmental Science and Pollution Research, 1998. 5(2): p. 71.
6. Dinh, H.T., et al., Iron corrosion by novel anaerobic microorganisms. Nature, 2004. 427(6977): p. 829-32.
7. Yu, L., et al., Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry. Electrochemistry Communications, 2013. 26: p. 101-104.
8. 曾永信等人, 109年核電廠熱水流安全分析暨管制法規技術精進研究 - 微生物腐蝕對於除役過渡階段的核電廠系統與組件安全維護的影響. 2020. p. B-28~B-36.
9. 曹楚南, 腐蝕電化學原理. 2008. p. 18-26.
10. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974.
11. Evans, U.R., An introduction to metallic corrosion. 1981, London: Edward Arnold.
12. Macdonald, D.D., Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors. Corrosion, 1992. 48(3): p. 194-205.
13. Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2000: Wiley.
14. Jones, D.A., Principles and prevention of corrosion. 1996, Upper Saddle River, NJ: Prentice Hall.
15. Zen, J.M., G. Ilangovan, and J.J. Jou, Square-wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes. Analytical Chemistry, 1999. 71(14): p. 2797-2805.
16. Dong, Z.H., T. Liu, and H.F. Liu, Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. Biofouling, 2011. 27(5): p. 487-95.
17. Hongwei, L.I.U. and L.I.U. Hongfang, Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria. Journal of Chinese Society for Corrosion and protection, 2017. 37(3): p. 195-206.
18. Hall-Stoodley, L. and P. Stoodley, Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol, 2005. 13(1): p. 7-10.
19. Chandra, J., et al., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol, 2001. 183(18): p. 5385-94.
20. Maunders, E. and M. Welch, Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiology Letters, 2017. 364(13): p. fnx120.
21. Li, Y. and C. Ning, Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive Materials, 2019. 4: p. 189-195.
22. Beech, I.B. and C.C. Gaylarde, Recent advances in the study of biocorrosion: an overview. Rev. Microbiol., 1999. 30: p. 117-190.
23. Lee, W. and W.G. Characklis, Corrosion of Mild Steel Under Anaerobic Biofilm. Corrosion, 1993. 49(03).
24. Usher, K.M., et al., Critical review: Microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration & Biodegradation, 2014. 93: p. 84-106.
25. Wang, D., et al., Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017. 48A(6): p. 2999-3007.
26. Li, S.Y., et al., Microbiologically influenced corrosion of underground pipelines under the disbonded coatings. Metals and Materials, 2000. 6: p. 281-286.
27. Abedi, S.S., A. Abdolmaleki, and N. Adibi, Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline. Engineering Failure Analysis, 2007. 14(1): p. 250-261.
28. Enning, D. and J. Garrelfs, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol, 2014. 80(4): p. 1226-36.
29. Little, B.J., R.I. Ray, and R. Pope, The Relationship Between Corrosion and the Biological Sulfur Cycle, in CORROSION 2000. 2000.
30. Borenstein, S.W., Microbiologically influenced corrosion handbook. 1994: Industrial Press Inc. 1-40.
31. Thauer, R.K., E. Stackebrandt, and W.A. Hamilton, Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria, in Sulphate-Reducing Bacteria: Environmental and Engineered Systems, L.L. Barton and W.A. Hamilton, Editors. 2007, Cambridge University Press: Cambridge. p. 1-38.
32. Pereira, I.A., S.A. Haveman, and G. Voordouw, Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing delta-proteobacteria. Sulphate-Reducing Bacteria: Environmental and Engineered Systems (LL, B. and WA, H., eds.), Cambridge University Press, Cambridge, UK, 2007: p. 215-240.
33. Li, Y., et al., Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corrosion Science, 2020. 167: p. 108512.
34. Jia, R., et al., Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corrosion Science, 2018. 130: p. 1-11.
35. Jia, R., et al., Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corrosion Science, 2019. 153: p. 127-137.
36. Javed, M.A., et al., Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion. Biofouling, 2016. 32(1): p. 109-22.
37. 滕彧, et al., 顯微組織對X70鋼在含有硫酸鹽還原菌的3.5%NaCl溶液中腐蝕行為的影響. 中國腐蝕與防護學報, 2017. 37(2): p. 168-174.
38. Javed, M.A., et al., The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel. Biofouling, 2013. 29(8): p. 939-52.
39. Liduino, V.S., M.T.S. Lutterbach, and E.F.C. Sérvulo, Biofilm activity on corrosion of API 5L X65 steel weld bead. Colloids and Surfaces B: Biointerfaces, 2018. 172: p. 43-50.
40. Chen, X., et al., Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings. Corrosion Science, 2015. 101: p. 1-11.
41. Liu, H. and Y.F. Cheng, Corrosion of initial pits on abandoned X52 pipeline steel in a simulated soil solution containing sulfate-reducing bacteria. Journal of Materials Research and Technology, 2020. 9(4): p. 7180-7189.
42. Guan, F., et al., Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization. PLoS One, 2016. 11(9): p. e0162315.
43. Liduino, V., et al., SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. Colloids and Surfaces B: Biointerfaces, 2021. 202: p. 111701.
44. Xu, D., et al., Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 2013. 77: p. 385-390.
45. Jia, R., et al., Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Frontiers in Microbiology, 2017. 8.
46. Wan, H., et al., Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 2018. 121: p. 18-26.
47. Fida, T.T., et al., Implications of Limited Thermophilicity of Nitrite Reduction for Control of Sulfide Production in Oil Reservoirs. Appl Environ Microbiol, 2016. 82(14): p. 4190-4199.
48. Gieg, L.M., T.R. Jack, and J.M. Foght, Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol, 2011. 92(2): p. 263-82.
49. Xu, D., Y. Li, and T. Gu, Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 2016. 110: p. 52-58.
50. Vroom Jurrien, M., et al., Depth Penetration and Detection of pH Gradients in Biofilms by Two-Photon Excitation Microscopy. Applied and Environmental Microbiology, 1999. 65(8): p. 3502-3511.
51. Olsson, C.O.A. and D. Landolt, Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta, 2003. 48(9): p. 1093-1104.
52. Dong, Y., et al., Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018. 123: p. 34-44.
53. Gupta, R.S., Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiology and Molecular Biology Reviews, 1998. 62(4): p. 1435-1491.
54. Willey, J.M., Sherwood, L., & Woolverton, C. J., Prescott's principles of microbiology. Vol. 7. 2011.
55. Bang, C. and R.A. Schmitz, Archaea associated with human surfaces: not to be underestimated. FEMS Microbiology Reviews, 2015. 39(5): p. 631-648.
56. Duncan, K.E., et al., Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities. Environmental Science & Technology, 2009. 43(20): p. 7977-7984.
57. Emerson, D. and C. Moyer, Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Applied and environmental microbiology, 1997. 63(12): p. 4784-4792.
58. Neubauer, S.C., D. Emerson, and J.P. Megonigal, Life at the Energetic Edge: Kinetics of Circumneutral Iron Oxidation by Lithotrophic Iron-Oxidizing Bacteria Isolated from the Wetland-Plant Rhizosphere. Applied and Environmental Microbiology, 2002. 68(8): p. 3988-3995.
59. Liu, H., et al., Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 2015. 100: p. 484-495.
60. Miyata, N., et al., Manganese(IV) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(II) oxidase activity. Applied and Environmental Microbiology, 2006. 72(10): p. 6467-6473.
61. Daniels, L., et al., Bacterial Methanogenesis and Growth from CO2 with Elemental Iron as the Sole Source of Electrons. Science, 1987. 237(4814): p. 509-511.
62. Boopathy, R. and L. Daniels, Effect of pH on Anaerobic Mild Steel Corrosion by Methanogenic Bacteria. Applied and Environmental Microbiology, 1991. 57(7): p. 2104-2108.
63. Cojocaru, A., et al., EIS Study on biocorrosion of some steels and copper in czapek dox medium containing Aspergillus Niger Fungus. Revista de Chimie, 2016. 67(7): p. 1264-1270.
64. Lugauskas, A., et al., Long-Time corrosion of metals (steel and aluminium) and profiles of fungi on their surface in outdoor environments in Lithuania. Chemija, 2016. 27(3): p. 135-142.
65. Qu, Q., et al., Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater. Corrosion Science, 2015. 98: p. 249-259.
66. Little, B.J., et al., Application of Environmental Cell Transmission Electron Microscopy to Microbiologically Influenced Corrosion, in CORROSION 2001. 2001. p. NACE-01266.
67. Little, B.J., R.I. Ray, and R. Pope, The Relationship Between Corrosion and the Biological Sulfur Cycle, in CORROSION 2000. 2000. p. NACE-00394.
68. Thierry, D. and W. Sand, Microbially influenced corrosion. CORROSION TECHNOLOGY-NEW YORK AND BASEL-, 2002. 17: p. 563-604.
69. Jia, R., et al., Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation, 2019. 137: p. 42-58.
70. Gu, T., K. Zhao, and S. Nesic, A new mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory. CORROSION, 2009(09390).
71. Xu, D. and T. Gu, Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. International Biodeterioration & Biodegradation, 2014. 91: p. 74-81.
72. Li, Y., et al., Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science & Technology, 2018. 34(10): p. 1713-1718.
73. Lovley, D.R., The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol, 2008. 19(6): p. 564-71.
74. Torres, C.I., et al., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev, 2010. 34(1): p. 3-17.
75. Huang, Y., et al., Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 2018. 94(C): p. 9-13.
76. Hernandez, M. and D. Newman, Extracellular electron transfer. Cellular and Molecular Life Sciences CMLS, 2001. 58(11): p. 1562-1571.
77. Zhang, P., et al., Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015. 101: p. 14-21.
78. Sherar, B.W.A., et al., Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion Science, 2011. 53(3): p. 955-960.
79. Li, H., et al., Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PloS one, 2015. 10(8): p. e0136183.
80. Huang, Y., et al., Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 2018. 94: p. 9-13.
81. Zhao, W., et al., Characterization of the effect of hydrogen sulfide on the corrosion of X80 pipeline steel in saline solution. Corrosion Science, 2016. 102: p. 455-468.
82. Dou, W., et al., Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry, 2020. 133: p. 107478.
83. Jia, R., et al., An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. Corrosion Science, 2018. 139: p. 301-308.
84. 蔣安忠等人, 除役核能電廠之除污方式及除役期間放射性廢棄物處理之研究. 2014.
85. Campbell, L.L. and J.R. Postgate, Classification of the spore-forming sulfate-reducing bacteria. Bacteriological reviews, 1965. 29(3): p. 359-363.
86. 中國石油天然氣總公司, SYT 0532-93 油田注入水细菌分析方法絕跡稀釋法. 1994.
87. Lata, S., C. Sharma, and A.K. Singh, Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria. Journal of Materials Engineering and Performance, 2013. 22(2): p. 463-469.
88. ASTM, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. G1-03(2017)e1.
89. Majidi, A.P. and M.A. Streicher, Four Nondestructive Electrochemical tests for detecting sensitization in type 304 and 304L Stainless Steels. Nuclear Technology, 1986. 75(3): p. 356-369.
90. 美嘉儀器共軛焦小組, LEICA Confocal Laser Scanning Microscope Technical & Application. 2000.
91. SHU, Y., et al., Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel. Acta Metall Sin, 2018. 54(10): p. 1408-1416.
92. Ge, H., G. Zhou, and W. Wu, The Spontaneous Passivation of Stainless Steel in Simulated Cooling Water and the Influence of Sulfide. Acta Physica Sinica, 2003. 19(05): p. 403-407.
93. Xia, D.H., Y. Behnamian, and J.L. Luo, Review—Factors Influencing Sulfur Induced Corrosion on the Secondary Side in Pressurized Water Reactors (PWRs). Journal of The Electrochemical Society, 2019. 166(2): p. C49-C64.
94. Lin Yu, J.D., Wei Zhao, Yanliang Huang, Baorong Hou, Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode. Electrochimica Acta, 2011. 56: p. 9041-9047.
95. Ben Yoav, H., et al., An electrochemical impedance model for integrated bacterial biofilms. Electrochimica Acta, 2011. 56(23): p. 7780-7786.
96. Babauta, J.T. and H. Beyenal, Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance. Journal of Power Sources, 2017. 356: p. 549-555.
97. Feliu, V., et al., Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corrosion Science, 1998. 40(6): p. 975-993.
98. Newman, R., H. Isaacs, and B. Alman, Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions. Corrosion, 1982. 38(5): p. 261-265.
99. Roberge, R., Effect of the nickel content in the pitting of stainless steels in low chloride and thiosulfate solutions. Corrosion, 1988. 44(5): p. 274-280.
100. Zhang, Y. and J. Moloney, Electrochemical corrosion rate measurement under iron sulfide deposit. Corrosion, 2016. 72(5): p. 704-715.
101. Persaud, S., A. Carcea, and R. Newman, An electrochemical study assisting the interpretation of acid sulfate stress corrosion cracking of NiCrFe alloys. Corrosion Science, 2015. 90: p. 383-391.