研究生: |
蔡易達 |
---|---|
論文名稱: |
耗散粒子動力學模擬雙親性奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化 Shear-Induced Microphase Transitions of Janus Nanorod/Diblock Copolymer Blends via Dissipative Particle Dynamics Simulations |
指導教授: | 張榮語 |
口試委員: |
許嘉翔
曾煥錩 王鎮杰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 耗散粒子動力學 、剪切流場 、雙親性棒狀奈米顆粒 、雙嵌段共聚物 、高分子共混 |
外文關鍵詞: | Dissipative Particle Dynamics, Shear Field, Janus Nanorod, Diblock Copolymer, Polymer Blends |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用耗散粒子動力學方法,模擬棒狀奈米顆粒/雙嵌段共聚物之共混系統在流場中的相態變化。我們研究的目的在於了解非等向性的棒狀奈米顆粒(nanorod)如何影響雙嵌段共聚物共混系統的自組裝結構,並且了解流場如何影響此系統的動力學行為。探討的變因主要有兩個:1. 棒狀奈米顆粒的濃度2. 棒狀奈米顆粒的長度。最後,我們比較不同系統的流變性質,如黏度(viscosity)等,以及觀察棒狀奈米顆粒在系統中的排向性(orientation)。
在本研究發現,添加雙親性棒狀奈米顆粒於雙嵌段共聚物中,能夠使這個結構更加穩固,減少此共混系統的彎曲擾動現象,因此雙親性棒狀奈米顆粒在較高濃度下,觀察不到垂直層板結構。此外,在改變長度這個變因下,研究發現長度太長時,會因為奈米顆粒在空間的排斥下,導致其在層板間的排序較亂,也降低了此共混系統的黏度。在這個研究中,我們提供了方法來創造實用性材料,並且提升其加工性質。
The microphase transitions of a nanorod/diblock copolymer composite under steady shear flow are investigated via dissipative particle dynamics. The aim of our study is to understand how the anisotropic nanorods affect the structure of diblock copolymer melts and how the shear flow induces the dynamic behaviors of the composites. We investigate two effects: one is nanorods concentration, and the other is nanorods length. Finally, we compare the rheological properties of different conditions and observe the oriention of nanorods. Our results show that Janus nanorods can not only reinforce the material, but also reduce fluctuation of the structure. Therefore, we can’t observe perpendicular lamellae at high nanorods concentrations. Additionally, we also observe that nanorods with longer length will be more disorder owing to the repellence between the nanorods and thus decrease the viscosity of the composites. In this research, we provide a viable approach to create functional materials with enhance processing properties.
1. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
2. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
3. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
4. Chou, S.H., et al., Morphology and internal structure control of rod-coil copolymer aggregates by mixed selective solvents. Soft Matter, 2011. 7(19): p. 9119-9129.
5. Fredrickson, G.H., Steady shear alignment of block copolymers near the isotropic--lamellar transition. Journal of Rheology, 1994. 38(4): p. 1045-1067.
6. Liu, W., et al., Dissipative particle dynamics study on the morphology changes of diblock copolymer lamellar microdomains due to steady shear. Phys Rev E Stat Nonlin Soft Matter Phys, 2006. 74(2 Pt 1): p. 021802.
7. Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: Insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
8. Laicer, C.S.T., et al., Gold nanorods seed coaxial, cylinder-phase domains from block copolymer solutions. Macromolecules, 2005. 38(23): p. 9749-9756.
9. Zhang, Q.L., et al., Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J. Am. Chem. Soc., 2006. 128(12): p. 3898-3899.
10. Ploshnik, E., et al., Hierarchical Surface Patterns of Nanorods Obtained by Co-Assembly with Block Copolymers in Ultrathin Films. Advanced Materials, 2010. 22(25): p. 2774-2779.
11. He, L.L., L.X. Zhang, and H.J. Liang, Mono- or bidisperse nanorods mixtures in diblock copolymers. Polymer, 2010. 51(14): p. 3303-3314.
12. Pan, Z.Q., et al., The dynamic behaviors of diblock copolymer/nanorod mixtures under equilibrium and nonequilibrium conditions. Polymer, 2011. 52(12): p. 2711-2721.
13. Yan, L.T., et al., Self-assembly of Janus nanoparticles in diblock copolymers. ACS Nano, 2010. 4(2): p. 913-20.
14. Evans, D.J. and G.P. Morriss, Nonlinear-Response Theory for Steady Planar Couette-Flow. Physical Review A, 1984. 30(3): p. 1528-1530.
15. Lees, A.W. and S.F. Edwards, The computer study of transport processes under extreme conditions. Journal of Physics C: Solid State Physics, 1972. 5(15): p. 1921.
16. AlSunaidi, A., W.K. Den Otter, and J.H.R. Clarke, Liquid-crystalline ordering in rod-coil diblock copolymers studied by mesoscale simulations. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004. 362(1821): p. 1773-1781.
17. Ryckaert, J.-P., G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 1977. 23:p.327-341
18. Evans, D.J. and S. Murad, Singularity Free Algorithm for Molecular-Dynamics Simulation of Rigid Polyatomics. Molecular Physics, 1977. 34(2): p. 327-331.
19. Rahman, A. and Stilling.Fh, Molecular Dynamics Study of Liquid Water. Journal of Chemical Physics, 1971. 55(7): p. 3336-3359.
20. Verlet, L., Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-103.
21. Andersen, H.C., Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 1983. 52(1): p. 24-34.
22. Swope, W.C., et al., A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. Journal of Chemical Physics, 1982. 76(1): p. 637-649.
23. Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids1989: Oxford University Press.
24. Sadus, R.J., Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation1999: ELSEVIER.
25. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
26. Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
27. He, L., et al., Microphase transitions of block copolymer/nanorod composites under shear flow. Soft Matter, 2011. 7(3): p. 1147-1160.
28. Koppi, K.A., et al., Lamellae Orientation in Dynamically Sheared Diblock Copolymer Melts. Journal De Physique Ii, 1992. 2(11): p. 1941-1959.
29. Guo, H.X., Shear-induced parallel-to-perpendicular orientation transition in the amphiphilic lamellar phase: A nonequilibrium molecular-dynamics simulation study. Journal of Chemical Physics, 2006. 124(5).
30.李浩旻,"以耗散粒子動力學模擬高分子在剪切流動下對形態變化之影響",國立清華大學化學工程研究所碩士學位論文,2011
31.羅予祥,"耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化",國立清華大學化學工程研究所碩士學位論文,2012