簡易檢索 / 詳目顯示

研究生: 溫在宇
Wen, Tsai-Yu
論文名稱: 使用分子動力學模擬探討水於白金基材上的潤濕行為
The Investigation of the Wetting Behavior of Water on Platinum Subtract via Molecular Dynamics Simulation
指導教授: 張榮語
Chang, Rong-Yeu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 65
中文關鍵詞: 分子動力學模擬純水白金潤濕行為
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在使用分子動力學模擬奈米液滴於基材上之潤濕(wetting)行為,依模擬系統找尋合適且能正確描述的水、白金及水與白金基材之勢能,並且建立奈米水滴與白金基材之系統,再進一步的探討兩者之間潤濕行為,以提供奈米噴流加工製程設計的條件最佳化之參考。
    研究內容可分為兩大部份,分別以溫度及液滴尺寸作為操作變因,探討液滴的潤濕行為,在潤濕行為的研究是以液滴於基材上的潤濕面積(wetting area)及液滴與基材間的接觸角(contact angle)做為此行為的討論議題。


    The purpose of this thesis is to simulate the behavior of a nano water droplet on a platinum substrate based on molecular dynamics. By finding appropriate potential energies for water-water, water-platinum and platinum-platinum, we may build up a simulation system to investigate the wetting behavior between water and platinum. And therefore the simulation results may be offered as reference to nano-spreading industries.

    The study is divided into two parts: choosing the temperature and the droplet size as operating conditions to investigate the wetting behavior respectively. The wetting area and the contact angle between the droplet and the platinum surface are investigated to discuss the wetting behaviors.

    第一章、 緒論 1 第一節、 前言 1 第二節、 研究背景與動機 7 第二章、 文獻回顧 9 第一節、 純水的文獻回顧 9 第二節、 水與基材的文獻回顧 13 第三章、 研究方法 16 第一節、 分子動力學基本理論 16 第二節、 分子勢能場 19 第一項、 分子勢能簡介 19 第二項、 水分子勢能 20 第三項、 白金金屬勢能 23 第四項、 水分子與白金原子間之勢能 24 第三節、 數值演算方法 27 第四節、 加速計算方法 30 第一項、 鄰域列表法 30 第二項、 Cell-Linking列表法 31 第三項、 分子勢能截斷法 31 第五節、 性質計算 33 第一項、 溫度 (Temperature) 33 第二項、 徑向分布方程式 (Radial Distribution Function) 33 第三項、 接觸角 (Contact angle) 34 第四項、 潤濕面積 (Wetting area) 34 第六節、 系統類型與控制 35 第一項、 系統類型 35 第二項、 週期性邊界(Periodic Boundary Condition) 35 第三項、 最小鏡像法 (Minimum Image Criterion) 36 第四項、 溫度控制 37 第四章、 模擬系統 38 第二節、 系統簡介 38 第三節、 純水塊材系統模擬 38 第四節、 純水於白金基材上之潤濕系統模擬 41 第五章、 結果與討論 46 第五節、 純水塊材的結構與性質 46 第六節、 純水於白金基材上之潤濕行為 50 第一項、 系統與操作變因 50 第二項、 溫度效應 52 第三項、 潤濕面積的溫度效應 52 第四項、 接觸角的溫度效應 53 第五項、 液滴尺寸效應 55 第六項、 潤濕面積之液滴尺寸效應 55 第七項、 接觸角之液滴尺寸效應 57 第六章、 結論與未來展望 60 第一節、 結論 60 第二節、 未來展望 62 第七章、 參考文獻 63

    1. Binnig, G. and H. Rohrer, SCANNING TUNNELING MICROSCOPY. Surface Science, 1983. 126: p. 236-244.
    2. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202: p. 1-8.
    3. Potyrailo, R.A., et al., Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 2007. 1: p. 123.
    4. Trafton, A., MIT model could improve some drugs' effectiveness. MIT Tech Talk, 2007. 52: p. 4.
    5. Matsumoto, M., S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 2002. 416: p. 409-413.
    6. Wu, Y., H.L. Tepper, and G.A. Voth, Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys., 2006. 124(2): p. 024503.
    7. Berendsen, H.J.C., et al., Interaction Models for Water in Relation to Protein Hydration. Intermolecular Forces, 1981: p. 331-342.
    8. Berendsen, H.J.C., G.J. R., and S.T. P., The Missing Term in Effective Pair Potentialst. J. Chem. Phys., 1987. 91: p. 6269-6271.
    9. Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983. 79: p. 926.
    10. Levitt, M., et al., Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Computer Physics Communications, 1995. 91(1-3): p. 215-231.
    11. Levitt, M., et al., Calibration and Testing od Water Model for Simulation of the Molecular Dynamics of Protein and Nucleic Acids in Solution. J. Physical Chemistry B, 1997. 101: p. 5051-5061.
    12. Jorgensen, W.L. and J.D. Madura, Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. Journal of the American Chemical Society, 1983. 105(6): p. 1407–1413.
    13. Mahoney, M.W. and W.L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys., 2000. 112(20): p. 8910.
    14. Rick, S.W., S.J. Stuart, and B.J. Berne, Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys., 1994. 101(7): p. 6141.
    15. Caldwell, J., L.X. Dang, and P.A. Kollman, Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions. Journal of the American Chemical Society, 1990. 112(25): p. 9144-99147.
    16. Ju, S.-P., S.-H. Yang, and M.-L. Liao, Study of Molecular Behavior in a Water Nanocluster: Size and Temperature Effect. Journal of Physical Chemistry B, 2006. 110(18): p. 9286–9290.
    17. Ju, S.-P., A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle. J. Chem. Phys., 2005. 122(9): p. 094718.
    18. Ju, S.-P. and J.-G. Chang, A molecular dynamics simulation investigation into the behavior of water molecules inside Au nanotubes of various sizes Microporous and Mesoporous Materials, 2004. 75(1-2): p. 81-87.
    19. Ju, S.-P., J.-G. Chang, and J.-S. Lin, The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes. J. Chem. Phys., 2005. 122(15): p. 154707.
    20. Chang, C.-I., et al., Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes. J. Chem. Phys., 2008. 128: p. 154703.
    21. Ju, S.-P. and C.-I. Weng, Investigation of the local structure variance of water molecules in laser-induced thermal desorption process. Applied Surface Science, 2004. 230(1-4): p. 179-190.
    22. Wua, Y.-C., et al., The behavior of water molecules nanoconfined between parallel Au plates. Computational Materials Science, 2007. 39(2): p. 359-364.
    23. Maiti, P.K. and W.A. Goddard, Solvent Quality Changes the Structure of G8 PAMAM Dendrimer, a Disagreement with Some Experimental Interpretations. Journal of Physical Chemistry B, 2006. 110(51): p. 25628-25632.
    24. 周東和, 水及鹽類水溶液之熱力學性質、鍵結行為及系統結構之探討:分子動力學模擬的研究, in 應用化學系. 2007, 國立交通大學: 新竹.
    25. Kimura, T., S. Maruyama, and M.-C. Lu, Molecular Scale Aspects of Liquid Contact on a Solid Surface. Thermal Science and Engineering, 2002. 10(6): p. 23-29.
    26. Kimura, T. and S. Maruyama, Molecular Dynamics Simulation of Water Droplet on Platinum Surface. Nippon Dennetsu Shinpojiumu Koen Ronbunshu, 2003. 39(2): p. 393-394.
    27. Heinzinger, K. and E. Spohr, Computer simulations of water-metal interfaces. Electrochimica Acta, 1989. 34(12): p. 1849-1856.
    28. Zhu, S.-B. and M. Philpott, Interaction of water with metal surfaces. J. Chem. Phys., 1994. 100(9): p. 6961-6968.
    29. Ingebrigtsen, T. and S. Toxvaerd, Contact Angles of Lennard-Jones Liquids and Droplets on Planar Surfaces. Journal of Physical Chemistry C, 2007. 111: p. 8518-8523.
    30. Halverson, J.D., et al., A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys., 2008. 129: p. 164708.
    31. Shi, B. and V.K. Dhir, Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J. Chem. Phys., 2009. 130: p. 034705.
    32. Shi, B., S. Sinha, and V.K. Dhir, Molecular dynamics simulation of the density and surface tension of water by particle-particle particle-mesh method. J. Chem. Phys., 2006. 124: p. 204715.
    33. Huang, E.S., et al., Using a Hydrophobic Contact Potential to Evaluate Native and Near-native Folds Generated by Molecular Dynamics Simulations. Journal of Molecular Biology, 1996. 257: p. 716-725.
    34. Raschke, T.M. and M. Levitt, Detailed Hydration Maps of Benzene and Cyclohexane Reveal Distinct Water Structures. J. Physical Chemistry B, 2004. 108: p. 13492-13500.
    35. Imafuku, M., et al., Computer simulations of the structures of the metallic superlattices Au/Ni and Cu/Ni and their elastic moduli. Journal of Physics F: Metal Physics, 1986. 16(7): p. 823-829.
    36. Cleri, F. and V. Rosato, Tight-binding potential for transition metal and alloys. Physical Review B, 1993. 48(1): p. 22-33.
    37. Spohr, E., Ion adsorption on metal surfaces. The role of water-metal interactions Journal of Molecular Liquids, 1995. 64(1-2): p. 91-100.
    38. Steinbach, P.J. and B.R. Brooks, New spherical-cutoff methods for long-range forces in macromolecular simulation. Journal of Computational Chemistry, 1994. 15(7): p. 667-683.
    39. Jackson, J.D., Classical Electrodynamics. 3 ed. 1975: Wiley.
    40. Haile, J.M., Molecular Dynamics Simulation: Elementary Methods. 1992.
    41. Rapaport, D.C., The Art of Molecular Dynamics Simulation. 2004.
    42. Shaw, D.J., Introduction to Colloid and Surface Chemistry. 4 ed. 1991.
    43. Vafaei, S. and M.Z. Podowskia, Analysis of the relationship between liquid droplet size and contact angle. Advances in Colloid and Interface Science, 2005. 113(2-3): p. 133-146.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE