研究生: |
蔡柏淵 Tsai, Bo-Yuan |
---|---|
論文名稱: |
探討擴展b-度量空間 A Discussion on Extended b-Metric Spaces |
指導教授: |
陳啟銘
Chen, Chi-Ming |
口試委員: |
李俊璋
Lee, Chiun-Chang 杜威仕 Du, Wei-Shih |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 16 |
中文關鍵詞: | 擴展b-度量空間 、固定點 、收縮條件 、廣義插植收縮函數 |
外文關鍵詞: | extended b-metric space, fixed point, contractive condition, generalized interpolative contraction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Kamran於2017年提出了擴展b-度量空間,並且給出在此空間上的固定點理論。我們於章
節二提出了一些構造擴展b-度量空間的方法。此外,我們於推論2.6中提出了構造度量空間
的方法。最後,於章節三中推廣了interpolative Reich–Rus–Ćirić type contraction及generalized contraction,證明其在擴展b-度量空間的固定點存在性。
In 2017, Kamran [9] proposed the extended b-metric space and proved some fixed point results on the space. In Chapter 2, we prove some approaches to contruct an extended b-metric space. Moreover, we present a sufficient condition of a metric space in Corollary 2.6. Finally, we prove a fixed point theorem on extended b-metric space by extending the interpolative Reich–Rus–Ćirić type contraction and the generalized contraction.
[1] B. Ahmad, S. K. Ntouyas, Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions, RACSAM. 110 (2016) 159–172.
[2] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fundamenta Mathematicae. 3 1922 133-–181. doi: 10.4064/fm-3-1-133-181.
[3] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 1969 458-–464. doi: 10.1090/S0002-9939-1969-0239559-9
[4] M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Amer. Math. Monthly. 116 2009 708-–718.
[5] I. Cabrera, J. Harjani, K. Sadarangani, Existence and Uniqueness of Solutions for a Boundary Value Problem of Fractional Type with Nonlocal Integral Boundary Conditions in Holder Spaces, Mediterr.
J. Math. 15 (2018) Art. 98.
[6] L. Ciric´, A generalization of Banach’s contraction principle., Proc. Amer. Math. Soc. 45 (1974) 267-–273.
[7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 1998 263—276.
[8] M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo. 22 1906 1—74. doi: 10.1007/BF03018603.
[9] T. Kamran, Maria Samreen, Qurat UL Ain, A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathematics. 5 2017 19. doi: 10.3390/math5020019.
[10] F. Khojasteh, S. Shukla, S. Radenovic´, A new approach to the study of fixed point theory for simulation functions, Filomat. 29 2015 1189—1194.
[11] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich–Rus–Ciri´c Type Contractions on Partial Metric Spaces, Mathematics. 6 2018 256. doi: 10.3390/math6110256
[12] E. Karapinar, C.-M. Chen, C.-T. Lee, Best Proximity Point Theorems for Two Weak Cyclic Contractions on Metric-Like Spaces, Mathematics. 7 2019 349. doi: 10.3390/math7040349
[13] A. Meir, Emmett Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 281969 326—329. doi: 10.1016/0022-247X(69)90031-6
[14] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 2006 289—297.
[15] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 2001 2683—2693. doi: 10.1016/0022-247X(69)90031-6.
[16] A.-F. Roldan-Lopez-de-Hierro, E. Karapınar, C. Roldan-Lopez-de-Hierro, J. Martınez-Moreno, Coincidence point theorems on metric spaces via simulation functions., J. Comput. Appl. Math. 275 (2015) 345-–355 doi: 10.1016/j.cam.2014.07.011.
[17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-–2165 doi: 10.1016/j.na.2011.10.014