研究生: |
鄭淑娟 |
---|---|
論文名稱: |
雷射光鉗系統之微型加熱裝置設計與研究 Microfluidic Heating Device in Optical Tweezers System |
指導教授: | 許志楧 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 雷射光鉗 、單分子操控 、溫度參數 、半導體微影技術 、圖形化金屬薄膜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生命系統具有高度的複雜性,各領域的研究學者常採用不同的研究技術,探索生命架構中尚未發掘的運作奧秘。在生物物理相關研究範疇中,藉由光電技術的輔助,重要的理論參數可由實驗資料獲得佐證;而舉凡巨觀及微觀尺度,溫度參數皆在其中扮演重要角色。在雷射光鉗系統中,因使用高度聚焦的雷射光束進行單分子層級的操控與觀測,溫度效應亦為此領域廣泛研究的主題。
半導體相關產業的製程技術在本世紀發展迅速,電子元件的線寬由毫米、微米,減小至奈米尺度。實驗裝置的微小化可由製程技術設計達成,讓使用的樣本體積減少至微升等級;結合製程技術,雷射光鉗的單分子研究更相得益彰。
本篇研究使用半導體微影技術,於微流道腔體中製作微米尺度的圖形化金屬薄膜,整合應用至雷射光鉗系統。經由光路設計,高度聚焦的雷射光束打入微流道腔體中之特定位置;由於圖形化金屬薄膜的吸收及傳導特性,雷射聚焦處將產生升溫現象,並形成不同的溫度梯度分佈於腔體中。藉由探討生物分子於此溫度場中的構形變化,可反應出腔體中溫度及對流行為的分佈,進而於特定加熱點整合雷射光鉗系統,達到生物單分子熱運動行為觀測之研究目的。
楊自森,吳見明,蔡旻龍,莊淳宇,崔豫笳,許志楧,2005,分子生醫光電科學與技術,物理雙月刊,27:670-686
[ 2 ] Peterman, E. J. G., F. Gittes, and C. F. Schmidt. 2003. Laser-induced heating in optical traps. Biophys. J. 84:1308–1316.
[ 3 ] Mao, H., J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco. Jr., and C. Bustamante. 2005. Temperature control methods in a laser tweezers system. Biophys. J. 89:1308–1316.
[ 4 ] Zondervan, R., F. Kulzer, H. v. d. Meer, J. A. J. M. Disselhorst, and M. Orrit. 2006. Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy. Biophys. J. 90:2958–2969.
[ 5 ] Eriksson, E., J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp. 2007. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip. 7:71–76.
[ 6 ] Yi, C., C. W. Li, S. Ji, and M. Yang. 2006. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta. 560:1–23.
[ 7 ] Umehara, S., Y. Wakamoto, I. Inoue, and K. Yasuda. 2003. On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem. Bioph. Res. Co. 305:534–540.
[ 8 ] Enger, J., M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp. 2004. Optical tweezers applied to a microfluidic system. Lab Chip. 4:196-200.
[ 9 ] Hoeb, M., J. O. Radler, S. Klein, M. Stutzmann, and M. S. Brandt. 2007. Light induce dielectrophoretic manipulation of DNA. Biophys. J. 93:1032–1038.
[ 10 ] Rogach, A. L., N. A. Kotov, D. S. Koktysh, J. W. Orstrander, and G. A. Ragoisha. 2000. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals. Chem. Mater. 12:2712–2726.
[ 11 ] Allard, M., E. H. Sargent, P. C. Lewis, and E. Kumacheva. 2004. Colloidal crystals grown on patterned surfaces. Adv. Mater. 16:1360–1364.
[ 12 ] Duhr, S. and D. Braun. 2006. Why molecules move along a temperature gradient. PNAS. 103:19678–19682.
[ 13 ] Chou, C. F., J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin. Electrodeless dielectrophoresis of single- and double-stranded DNA. 2002. Biophys. J. 83:2170-2179.
[ 14 ] Arai, F., C. Ng, H. Maruyama, A. Ichikawa, H. El-Shimy, and T. Fukuda. 2005. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip. 5:1399–1403.
[ 15 ] Heuvel, M. G. L. van den, M. P. de Graaff, and C. Dekker. 2006. Molecular sorting by electrical steering of microtubules in kinesin-coated channels. SCIENCE. 312:910–914.
[ 16 ] Huang, L. R., E. C. Cox, R. H. Austin, and J. C. Sturm. 2004. Continuous particle separation through deterministic lateral displacement. SCIENCE. 304:987-990.
[ 17 ] Shen, Z. H., S. Y. Zhang, J. Lu, and X. W. Ni. 2001. Mathematical modeling of laser induced heating and melting in solids. Opt. Laser Technol. 33:533–537.
[ 18 ] Cathelinaud, M., F. Lemarquis, and C. Amra. 2002. Index determination of opaque and semitransparent metallic films: application to light absorbers. Appl. Optics. 41:2546-2554.
[ 19 ] Incropera, F. P., and D. P. DeWitt. 2002. Fundamentals of heat and mass transfer. J. Wiley.
[ 20 ] Smith, S. B., L. Finzi, and C. Bustamente. 1992. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. SCIENCE. 258:1122-1126.
[ 21 ] Seol, Y., A. E. Carpenter, and T. T. Perkins. 2006. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31:2429-2431.
[ 22 ] Dholakia, K., G. Spalding, and M. MacDonald. 2002. Optical tweezers: the next generation. Phys. World. 31-35.
[ 23 ] Tai, C. H., S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee. 2007. Automatic microfluidic platform for cell separation and nucleus collection. Biomed. Microdevices. 9:533–543.
[ 24 ] Ishijima, A., H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida. 1998. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. CELL. 92:161–171.
[ 25 ] 羅正忠,2007,半導體製程技術導論,台灣培生教育出版社
[ 26 ] 潘欽,2001,沸騰熱傳與雙相流,俊傑出版社
[ 27 ] Allmen, M., and A. Blatter. 1995. Laser-beam interactions with material. Springer.
[ 28 ] Lide, D. R. 2008. CRC handbook of chemistry and physics. CRC.
[ 29 ] Braun, D., and A. Libchaber. 2002. Trapping of DNA by thermophoretic depletion and convection physical. Phys. Rev. Lett. 89:188103.
[ 30 ] Rassat, S. D., and E. J. Davis. 1994. Temperature measurement of single levitated microparticles using stokes/anti-stokes Raman intensity ratios. Appl. Spectrosc. 48:1498–1505.
[ 31 ] Zondervan, R. 2006. Single molecule dynamics at variable temperatures. Ph.D. Thesis.
[ 32 ] Taketoshi, N., T. Baba, and A. Ono. 2001. Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique. Meas. Sci. Technol. 12:2064–2073.
[ 33 ] Miozzi, M., G. Querzoli, and G. P. Romano. 1998. The investigation of an unstable convective flow using optical methods. Phys. Fluids. 10:2995–3008.
[ 34 ] Duhr, S., and D. Braun. 2005. Two-dimensional colloidal crystals formed by thermophoresis and convection. Appl. Phys. Lett. 86:131921.
[ 35 ] Ladoux, B., and P. S. Doyle. 2000. Stretching tethered DNA chains in shear flow. Europhys. Lett. 52:511–517.