簡易檢索 / 詳目顯示

研究生: 張正揚
Chang, Cheng-Yang
論文名稱: 應用於振動感測之微機電壓電式加速度計模組設計與開發
Design and Development of MEMS-Based Piezoelectric Accelerometer Modules for Vibration Monitoring Applications
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 邱一
Chiou, Yi
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 振動感測模組壓電式加速度計鋯鈦酸鉛PZT
外文關鍵詞: Vibration sensing module, Piezoelectric accelerometer, Lead zirconate titanate, PZT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為開發以微機電壓電式加速度計做為感測器之振動感測模組,而此振動感測模組將應用於馬達振動監測系統,達到監測馬達健康狀態之目的。此模組包含:(i)以PZT on SOI製程製造之加速度計元件,共有六種主要設計,而每種設計下又有三種分別對應到共振頻率5 kHz、10 kHz、20 kHz之子設計,根據不同的頻寬需求,可以選擇不同的元件來進行使用;(ii)加速度計讀取電路之印刷電路板設計,此電路之增益約為100倍,低頻轉角位於56.1 Hz,而高頻轉角位於148.2 kHz;(iii)金屬外殼,元件打線至PCB子板後,透過插拔方式連接至含有讀取電路之PCB母版,由螺絲將電路板和金屬外殼鎖至測試平台,組成測試用之振動感測模組。本論文中包含:(i)壓電式加速度計之設計、有限元素分析法模擬、元件製作流程、LDV量測;(ii)讀取電路之架構、LTspice模擬、印刷電路板佈局與製作、PCB之量測;(iii)振動感測模組之設計與量測。本論文中之實驗選用六個共振頻率為5 kHz或10 kHz之元件,裝置於振動感測模組中,經量測得到共振頻率5 kHz與10 kHz元件之性能表現分別為靈敏度19.11 mV/g、解析度2.57 mg/√Hz,及靈敏度8.12 mV/g、解析度5.85 mg/√Hz。


    The purpose of this work is to develop a vibration sensing module using a MEMS piezoelectric accelerometer as a sensor. The vibration sensing module will be applied to the motor vibration monitoring system to achieve the purpose of monitoring the health of the motor. This module includes: (i) MEMS piezoelectric accelerometer device fabricated by PZT on SOI process. There are six main designs, and each has three sub-designs that correspond to resonant frequencies of 5 kHz, 10 kHz, and 20 kHz.
    Depending on the bandwidth requirements, different device can be selected for use. (ii) Printed circuit board design for accelerometer readout circuit. The gain of this circuit is about 100, the low corner frequency is at 56.1 Hz and the high corner frequency is at 148.2 kHz. (iii) Metal casing. After the device is wire-bonded to the daughter board, it is connected to the PCB containing the readout circuit by plugging and unplugging. Finally, the PCB and the metal casing are locked by screws to the test platform to form a vibration sensing module for testing. In this thesis shows: (i) Designs and finite element method simulations of MEMS piezoelectric accelerometers, fabrication process flow of the device and the LDV measurement of the device. (ii) Readout circuit architecture, LTspice simulation of the circuit, printed circuit board layout and fabrication, and the measurement of the PCB. (iii) Design and measurement of vibration sensing module. The experiments in this thesis use six devices with a resonant frequency of 5 kHz or 10 kHz, which are installed in the vibration sensing module. The best measured performance of the resonant frequency 5 kHz device is sensitivity of 19.11 mV/g and resolution of 2.57 mg/√Hz, and 10 kHz devices is sensitivity of 8.12 mV/g and resolution 5.85 mg/√Hz.

    摘要 ii 目錄 v 圖目錄 vii 表目錄 xii 第一章 前言 13 1-1 研究動機與背景 13 1-2 文獻回顧 19 第二章 原理分析和元件設計 24 2-1 壓電原理 24 2-1-1 壓電材料介紹 24 2-1-2 壓電效應介紹 25 2-2 壓電式加速度計原理 28 2-2-1 壓電式加速度計介紹 28 2-2-2 壓電式加速度計模型 29 2-3 元件設計與模擬 34 2-3-1 5 kHz加速度計設計一 36 2-3-2 5 kHz加速度計設計二 39 2-3-3 5 kHz加速度計設計三 42 2-3-4 10 kHz加速度計設計一 45 2-3-5 10 kHz加速度計設計二 48 2-3-6 10 kHz加速度計設計四 51 2-3-7 元件佈局設計 55 第三章 壓電式加速度計製程與結果 56 3-1 PZT加速度計之製程流程 56 3-2元件製程結果 60 第四章 振動感測模組設計 61 4-1 壓電式加速度計元件 61 4-2 印刷電路板 62 4-2-1加速度計讀取電路 62 4-2-2印刷電路板佈局 65 4-3 金屬外殼 67 4-4 振動感測模組 68 第五章 量測結果與討論 70 5-1 電路量測 70 5-2 加速度計元件量測 71 5-3振動感測模組量測 75 5-3-1量測架設 75 5-3-2振動感測模組量測結果 76 第六章 結論與未來工作 86 6-1 結論 86 6-2 未來工作 87 參考文獻 88

    [1] 微機電系統介紹,http://www.taifer.com.tw/taifer/tf/044003/45.htm
    [2] D. K. Shaeffer, “MEMS inertial sensors: A tutorial overview,” IEEE Communications Magazine, vol. 51, no. 4, 2013, pp. 100-109.
    [3] Yole Development, http://www.yole.fr
    [4] P. Waydande, N. Ambhore, and S. Chinchanikar, “A Review on Tool Wear Monitoring System,” Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, Pune, India, http://article.sapub.org/10.5923.c.jmea.201601.09.html
    [5] 羅佐良,“智慧聲紋分析於迴轉機械之應用”,工研院機械與系統所。
    [6] M. Looney, “An Introduction to MEMS Vibration Monitoring,” Analog Dialogue, vol. 48, no. 06, 2014, pp. 1-3.
    [7] 周志忠,“普通高速車床振動診斷之研究”,修平科技大學機械工程學系,http://ir.hust.edu.tw/bitstream/310993100/2895/1/
    [8] M. Weber, “Piezoelectric accelerometers: Theory and Application,” Metra Mess- und Frequenztechnik in Radebeul e.K.
    [9] M. Serridge and T. R. Licht, “Piezoelectric Accelerometer and Vibration Preamplifier Handbook,” 1987.
    [10] O. Aydin and T. Akin, “A bulk-micromachined fully differential MEMS accelerometer with split interdigitated fingers,” IEEE Sensors Journal, vol. 13, no. 8, 2013, pp. 2914-2921.
    [11] Amini, B. Vakili, and F. Ayazi. “Micro-gravity capacitive silicon-on-insulator accelerometers,” Journal of Micromechanics and Microengineering, vol. 15, no.11, 2005, pp. 2113.
    [12] J. C. Yu and F. H. Lai, “Design and fabrication of the micro-accelerometer using piezoelectric thin films,” Ferroelectrics, vol. 263, no. 1, 2001, pp. 101-106.
    [13] J. C. Yu and C. B. Lan, “System modeling of microaccelerometer using piezoelectric thin films,” Sensors and Actuators A: Physical, vol. 88, no. 2, 2001, pp. 178-186.
    [14] J. C. Yu and C. B. Lan, “System modeling and robust design of microaccelerometer using piezoelectric thin film,” Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI'99), IEEE, 1999, pp.99-104.
    [15] Q. M. Wang, Z. Yang, F. Li and P. Smolinski, “Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling,” Sensors and Actuators A: Physical, vol. 113, no. 1, 2004, pp 1-11.
    [16] D. Rani, P. L. H. V. Prasad and K. R. Prasad, “Design of a MEMS piezoelectric accelerometer,” Journal of Electrical Engineering, vol. 11, no. 3, 2011.
    [17] Y. B. Gianchandani and S. B. Crary, “Parametric modeling of a microaccelerometer: comparing I-and D-optimal design of experiments for finite-element analysis,” Journal of Microelectromechanical Systems, vol. 7, no .2, 1998, pp. 274-282.
    [18] M. J. Novack, “Design and fabrication of a thin film micromachined accelerometer,” Diss. Massachusetts Institute of Technology, 1992.
    [19] C. C. Hindrichsen, E. V. Thomsen, R. Lou-Moller and T. Bove, “MEMS accelerometer with screen printed piezoelectric thick film,” SENSORS, 2006 IEEE, 2006, pp. 1477-1480.
    [20] Y. Nemirovsky, A. Nemirovsky, P. Muralt and N. Setter, “Design of novel thin-film piezoelectric accelerometer,” Sensors and Actuators A: Physical, vol. 56, no .3, 1996, pp. 239-249.
    [21] S. P. Beeby, N. J. Grabham and N. M. White, “Microprocessor implemented self-validation of thick-film PZT/silicon accelerometer,” Sensors and Actuators A: Physical, vol. 92, no. 1-3, 2001, pp. 168-174.
    [22] R. J. Littrell, “High Performance Piezoelectric MEMS Microphones,” Dissertation, The university of Michigan, 2010.
    [23] Zinc Oxide (ZnO) Semiconductors, https://www.azom.com/article.aspx?ArticleID=8417
    [24] 壓電效應,維基百科,https://zh.wikipedia.org/wiki/%E5%A3%93%E9%9B%BB%E6%95%88%E6%87%89
    [25] Piezoelectric effect – Direct and reverse piezoelectric effect,
    http://www.tmj.eg.net/viewimage.asp?img=TantaDentJ_2017_14_1_1_202054_f4.jpg
    [26] Crystal directions in piezoelectric material before and after poling process,
    https://www.researchgate.net/figure/Crystal-directions-in-piezoelectric-material-before-and-after-poling-process_fig3_318536793
    [27] F. Gerfers, P. M. Kohlstadt, E. Ginsburg, M. Y. He, D. Samara-Rubio, Y. Manoli and L. P. Wang, “Sputtered AlN thin films for piezoelectric MEMS devices-FBAR resonators and accelerometers,” Solid state circuits technologies, IntechOpen, 2010.
    [28] F. A. Levinzon, “Fundamental noise limit of piezoelectric accelerometer,” IEEE Sensors Journal, vol. 4, no. 1, 2004, pp. 108-111.
    [29] G. Cai, X. Chen, B. Li, B. Chen and Z. He, “Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information,” Sensors, vol. 12, no. 10, 2012, pp. 12964-12987.
    [30] A. Albarbar, A. Badri, J. K. Sinha and A. Starr, “Performance evaluation of MEMS accelerometers,” Measurement, vol. 42, no. 5, 2009, pp. 790-795.
    [31] S. H. Ghafari, M. F. Golnaraghi and R. Mansour, “Design and modeling of a 3-D micromachined accelerometer,” NanoTech 2004, vol. 2, 2004.
    [32] Comsol, https://www.comsol.com/
    [33] M. Kellett, “Charge Amplifiers for Piezo Electric Accelerometers,” Electronics and Software Consultant.
    [34] S. K. E. Hansen, “Design and experimental investigation of charge amplifiers for ultrasonic transducers,” MS thesis, UiT Norges arktiske universitet, 2014.
    [35] H. Zhou, M. H. Xu, H. Peng, L. H. Zhu, Y. B. Zeng, H. Guo, “On the measuring circuit of piezoelectric accelerometers,” 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), IEEE, 2017, pp. 524-527.
    [36] TL071 Low-Noise JFET-Input General-Purpose Operational Amplifier, TI.com, http://www.ti.com/product/TL071
    [37] LTspice, https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

    QR CODE