簡易檢索 / 詳目顯示

研究生: 王价輝
Wang, Jie-Huei
論文名稱: 針對巢式病例對照樣本採用懲罰概似方法對Cox’s迴歸模型之變數選取研究
Penalized Likelihood Approach to Variable Selection for Cox’s Regression Model under Nested Case-Control Sampling
指導教授: 熊昭
張憶壽
口試委員: 徐南蓉
謝文萍
鄭又仁
洪志真
王維菁
程毅豪
熊昭
張憶壽
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 72
中文關鍵詞: 變數選取懲罰概似估計量輪廓概似函數巢式病例對照取樣懲罰函數
外文關鍵詞: Nested case-control sampling, Oracle property, Penalized maximum likelihood estimate, Profile likelihood, SCAD, Variable selection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Assuming Cox’s regression model, we consider penalized likelihood approaches to conduct variable selection under nested case-control sampling or case-cohort sampling. Penalized non-parametric maximum likelihood estimate (PNPMLE) are characterized by self-consistency equations derived from score functions, which form the basis of the algorithm to compute PNPMLE. Consistency, asymptotic normality and oracle properties of the PNPMLE, the sparsity property of the penalty, and a consistent estimate of the asymptotic variance, based on observed profile likelihood, are established. A cross-validation method is used to choose the tuning parameter within a family of penalty function. Simulation studies indicate that the numerical performance of PNPMLE is satisfactory and that LASSO performs best when cohort size is small and SCAD performs best when cohort size is large and may eventually perform as well as the oracle estimator, resembling the findings when i.i.d. sampling is considered. This method is also illustrated in a real dataset.

    Contents 1. Introduction 1 2. Likelihood and Penalty Functions 4 2.1 Likelihood Function of Nested Case-Control Design………………………4 3. Penalized Nonparametric Maximum Likelihood Estimate (PNPMLE) 9 3.1 Identifiability………………………………………………………………..9 3.2 Existence of the PNPMLE…………………………..…………………….10 3.3 Algorithm for the PNPMLE…………………………….………..………...14 3.4 Selection of Tuning Parameters……………………………………………18 4. Asymptotics and Oracle Properties 20 4.1 Consistency of the PNPMLE……………………………………………...20 4.2 Asymptotic Normality and Oracle Properties……………………………..21 4.3 Observed Profile Information……………………………………………...24 5. Simulation Results 29 5.1 Comparison of the PNPMLEs……………………………………………...29 6. A Real Dataset 33 7. Discussion 35 References 36 Appendix 39 A.1 Identifiability of full likelihood function…………………………………..39 A.2 Derivations for these score functions (3.6), (3.7) and (3.8)……………….42 A.3 Proof for Lemma 3.1 and 3.2 (Integral equations for cumulative hazards).45 A.4 Proof of Theorem 4.1 (Consistency)………………………………………47 A.5 Proofs for subsection 4.2 (Asymptotic normality and oracle properties)….55 A.5.1 Proof of Theorem 4.2 (Sparsity)…………………………………….55 A.5.2 Proof of Lemma 4.1(Fréchet differentiability)……………………...58 Proof of Theorem 4.3 (Asymptotic normality and oracle property)..65 A.6 Proofs for subsection 4.3 (Observed profile information)…………………66 A.7 Two Results Due to van der Vaart and Wellner (1996)……………………70 A.8 Model Error of Cox’s Proportional Hazards Model……………………….71 A.9 Median Absolute Deviation………………………………………………..72

    References
    Cai, T., and Zheng, Y. (2012), “Evaluating Prognostic Accuracy of Biomarkers in
    Nested Case-Control Studies,” Biostatistics, 13, 89-100.
    Chang, I. S., Hsiung, C. A., Wang, M. C., and Wen, C. C. (2005), “An Asymptotic Theory for the Nonparametric Maximum Likelihood Estimation in the Cox-Gene Model,” Bernoulli, 11, 863-892.
    Chang, I. S., Hsiung, C. A., Wen, C. C., Wu, Y. J., and Yang, C. C. (2007), “Non-Parametric Maximum-Likelihood Estimation in a Semiparametric Mixture Model for Competing-Risks Data,” Scandinavian Journal of Statistics, 34, 870-895.
    Chang, I. S., Wen, C. C., Wu, Y. J., and Yang, C. C. (2007), “A Fast Algorithm for the Nonparametric Maximum Likelihood Estimate in the Cox-Gene Model,” Statistica Sinca, 17, 841-856.
    Chen, H. Y. (2002), “Double-Semiparametric Method for Missing Covariates in Cox Regression Models,” Journal of the American Statistical Association, 97, 565-576.
    Donoho, D. L., and Johnstone, I. M. (1994), “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81, 425-455.
    Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood and its Oracle Peoperties,” Journal of the American Statistical Association, 96, 1348-1360.
    Fan, J., and Li, R. (2002), “Variable Selection for Cox’s Proportional Hazards Model and Frailty Model,” The Annals of Statistics, 30, 74-99.
    Hunter, D. R., and Li, R. (2005), “Variable Selection Using MM Algorithms,” The Annals of Statistics, 33, 1617-1642.
    Läärä, E. (2011), “Study Designs for Biobank-Based Epidemiologic Research on Chronic Diseases,” Methods in Molecular Biology, 675, 165-178.
    Murphy, S. A., and van der Vaart, A. W. (1999), “Observed Information in Semi-Parametric Models,” Bernoulli, 5, 381-412.
    Murphy, S. A., and van der Vaart, A. W. (2000), “On Profile Likelihood,” Journal of the American Statistical Association, 95, 449-465.
    Prentice, R. L. (1986), “A Case-Cohort Design for Epidemiologic Cohort Studies and Disease Prevention Trials,” Biometrika, 73, 1-11.
    Rudin, W. (1973), Functional Analysis. New York: McGraw-Hill.
    Rundle, A. G., Vineis, P., and Ahsa, H. (2005), “Design Options for Molecular Epidemiologic Research within Cohort Studies,” Cancer Epidemiology Biomarkers Prev., 14, 1899-1907.
    Scheike, T. H., and Juul, A. (2004), “Maximum Likelihood Estimation for Cox’s Regression Model under Nested Case-Control Sampling,” Biostatistics, 5, 193-206.
    Scheike, T. H., and Martinussen, T. (2004), “Maximum Likelihood Estimation for Cox’s Regression Model under Case-Cohorts Sampling,” Scandinavian Journal of Statistics, 31, 283-293.
    Suzuki, M., and Yoshino, I. (2010), “Aberrant Methylation in Non-Small Cell Lung Cancer,” Surgery Today, 40, 602-607.
    Thomas, D. C. (1977), Addendum to “Methods of Cohort Analysis: Appraisal by Application to Asbestos Mining," by F. D. K. Liddell, J. C. McDonald and D. C. Thomas. Journal of the Royal Statistical Society, Ser. A, 140, 483-485.
    Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Ser. B, 58, 267-288.
    Tibshirani, R. (1997), “The Lasso Method for Variable Selection in the Cox Model,” Statistics in Medicine, 16, 385-395.
    van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press.
    van der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence and Empirical Processes with Application to Statistics, New York: Springer.
    Verweij, P. J. M., and Van Houwelingen, H. C. (1993), “Cross-Validation in Survival Analysis,” Statistics in Medicine, 12, 2305-2314.
    Wellner, J. A., and Zhan, Y. (1997), “A Hybrid Algorithm for Computing of the Nonparametric Maximum Likelihood Estimator from Censored Data,” Journal of the American Statistical Association, 92, 945-959.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE