研究生: |
高立丞 Kao, Li-Cheng |
---|---|
論文名稱: |
飛秒光游離誘發雙官能基陽離子之電荷轉移動態學研究 Femtosecond Photoionization Induced Charge-Transfer Dynamics in Bifunctional Molecular Cations |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
陳益佳
Chen, I-Chia 李以仁 Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 飛秒雷射 、電荷轉移 、雙官能基分子 |
外文關鍵詞: | charge-transfer, femtosecond laser, Bifunctional Molecular |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們利用飛秒激發-探測技術搭配光游離光裂解機制測量MNA (N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine)及MPBA (methyl(4-phenylbutyl)amine)陽離子激發態的緩解動態學行為。我們以266 nm的飛秒脈衝雷射透過1+1 共振多光子游離技術,經過苯環端局部S1 state使分子吸收兩顆激發光子將苯環端局部游離,使它到達離子態D1 state。我們在不同的激發-探測延遲時間導入探測脈衝,使緩解中的陽離子吸收探測光子能量進而裂解,記錄離子損耗訊號隨激發-探測延遲時間之變化即可獲得離子損耗瞬時訊號。我們使用連續動力學模型對所測得的MNA與 MPBA離子損耗瞬時訊號進行擬合,結果發現皆可獲得三個時間常數τ1,τ2和τ3。我們將τ1指認為陽離子D1 態快速的分子內振動能重新分配行為,τ2代表陽離子由D1 state經由內轉換緩解至D0 state,此過程相當於苯基端上的正電荷移轉至胺基端,或是胺基上的電子移轉到苯基端上,故為一電荷轉移過程,τ3則為陽離子在緩解至D0 state時在不同構型間再平衡過程。我們測到的MNA與MPBA的τ2分別為9.3與6.6 ps,為了支持我們對τ2之指認,我們以相同技術研究無電荷轉移反應的PPN (3-phenylpropionitrile)陽離子,結果並沒有觀察到上述類似時間量級的緩解過程,這強力支持了τ2為電荷轉移時間常數之指認。綜合本論文與本實驗室前人之研究結果,我們發現這一系列離子內電荷轉移速率常數與平均RN-Ph的變化概略符合指數衰減趨勢,亦即當平均RN-Ph距離越長則電荷轉移越慢,這顯示影響電荷轉移速率的因素之一為空間直線距離而非碳鏈的長度。
In this study, we used femtosecond pump-probe photoionization-photofragmentation spectroscopy to study ultrafast charge transfer (CT) dynamics in N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine (MNA), and methyl(4-phenylbutyl)amine (MPBA) cations. We used 1+1 resonance-enhanced multiphoton ionization to locally ionize their phenyl group via their S1 state by absorbing two pump photons and probed the subsequent relaxation dynamics in the cations by using a delayed femtosecond probe pulse that results in ion fragmentation. We acquired ion depletion transients by monitoring the parent ion signals as a function of pump-probe delay time. Using a consecutive kinetics model to fit the ion depletion transients, we obtained three time constants (τi). We assigned τ1 to the rapid intramolecular vibrational energy redistribution (IVR) of the initially ionized cationic D1 state. The time constant 2 was assigned to the internal conversion from the cation D1 to D0 ground state, corresponding to the shift of the positive charge initially localized in the phenyl ring to the amino group, and therefore it corresponds to a CT process. The time constant 3 was assigned to the conformational relaxation in the D0 state to establish the final equilibrium distribution. In this work CT time constants for MNA and MPBA cations were found to be about 9.3 and 6.6 ps. In order to support our assignment for τ2, we used the same method to study PPN (3-phenylpropionitrile), a cation in which CT is not possible energetically, and we did not observe any relaxation dynamics in similar time scales to those mentioned above. This strongly supports the assignment of τ2 to charge transfer. Combining results of this thesis and those reported by former group members of our laboratory, we found that the dependence of the CT rate on the average distance between the nitrogen atom and the phenyl ring (RN-Ph) in this series of cations roughly conforms with an exponential decay relation, that is, the longer the average RN-Ph distance is, the slower the charge transfer becomes. This shows that one of the factors affecting the rate of charge transfer is the straight-line distance in space rather than the length of the separating carbon chain.
1. Barber,J.;Andersson,B.Revealing the Blueprint of Photosynthesis. Nature 1994, 370, 31-34.
2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763-774.
3. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H. Distal charge transport in peptides. Angew. Chem. Int. Ed. Engl. 2007, 46, 3196-3210.
4. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D. The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chem. Commun. 2014, 50, 1652-1654.
5. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B. Electron transfer in peptides. Chem. Soc. Rev. 2015, 44, 1015-1027.
6. Meggers, E.; Michel-Beyerle, M. E.; Giese, B. Sequence Dependent Long Range Hole Transport in DNA. J. Am. Chem. Soc. 1998, 120, 12950-12955.
7. Kawai, K.; Majima, T. Hole Transfer Kinetics of DNA. Acc. Chem. Re. 2013, 46, 2616-2625.
8. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P. H. Long-range, photoinduced charge separation in solvent-free donor—bridge—acceptor molecules. Chem. Phys. Lett. 1993, 205, 451-455.
9. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M. E. Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289-7299.
10. Weinkauf, R.; Schanen, P.; Yang, D.; Soukara, S.; Schlag, E. W. Elementary Processes in Peptides: Electron Mobility and Dissociation in Peptide Cations in the Gas Phase. J. Phys. Chem. 1995, 99, 11255-11265.
11. Weinkauf, R.; Schanen, P.; Metsala, A.; Schlag, E. W.; Bürgle, M.; Kessler, H. Highly Efficient Charge Transfer in Peptide Cations in the Gas Phase: Threshold Effects and Mechanism. J. Phys. Chem. 1996, 100, 18567-18585.
12. Weinkauf, R.; Lehr, L.; Metsala, A. Local Ionization in 2-Phenylethyl-N,N-dimethylamine: Charge Transfer and Dissociation Directly after Ionization. J. Phys. Chem. A 2003, 107, 2787-2799.
13. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E. W. Femtosecond Dynamics after Ionization: 2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J. Phys. Chem. A 2005, 109, 8074-8080.
14. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M. Control of Local Ionization and Charge Transfer in the Bifunctional Molecule 2-Phenylethyl-N,N-dimethylamine Using Rydberg Fingerprint Spectroscopy. J. Phys. Chem. A 2005, 109, 1920-1925.
15. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. J. Phys. Chem. A 2017, 121, 1442-1447.
16. Closs, G. L.; Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller, J. R. Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions. J. Phys. Chem. 1986, 90 , 3673-3683.
17. Closs Gerhard, L.; Miller John, R. Intramolecular Long-Distance Electron Transfer in Organic Molecules. Science 1988, 240, 440-447.
18. Johnson, M. D.; Miller, J. R.; Green, N. S.; Closs, G. L. Distance dependence of intramolecular hole and electron transfer in organic radical ions. J. Phys. Chem. 1989, 93, 1173-1176.
19. 楊博竣, 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究, 碩士論文, 國立清華大學, 新竹市, 2018.
20. 宋桓宇, 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究, 碩士論文, 國立清華大學, 新竹市, 2019.
21. 顏暐儒, 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究, 碩士論文, 國立清華大學, 新竹市, 2020.
22. 紀泓瑋, 超快光游離誘發雙官能基陽離子之電荷轉移動態學研究, 碩士論文, 國立清華大學, 新竹市, 2021.
23. Smalley, R. E.; Wharton, L.; Levy, D. H. Molecular optical spectroscopy with supersonic beams and jets. Acc. Chem. Res. 1977, 10, 139-145.
24. Li, S.; Bernstien, E. R.; Seeman, J. I. Stable conformations of benzylamine and N,N-dimethylbenzylamine. J. Phys. Chem. 1992, 96, 8808-8813.
25. Sun, S.; Bernstein, E. R. Spectroscopy of Neurotransmitters and Their Clusters. 1. Evidence for Five Molecular Conformers of Phenethylamine in a Supersonic Jet Expansion. J. Am. Chem. Soc. 1996, 118 , 5086-5095.
26. Im, H.-S.; Bernstein, E. Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol. Office of naval research technical reports#43, 1989, 39.
27. Law, K. S.; Bernstein, E. R. Molecular jet study of van der Waals complexes of flexible molecules: n‐Propyl benzene solvated by small alkanesa. J. Chem. Phys. 1985, 82, 2856-2866.
28. Takahashi, M.; Kimura, K. Cation vibrational spectroscopy of trans and gauche n‐propylbenzene rotational isomers. Two‐color threshold photoelectron study and ab initio calculations. J. Chem. Phy. 1992, 97, 2920-2927.
29. Staley, R. H.; Kleckner, J. E.; Beauchamp, J. L. Relationship between orbital ionization energies and molecular properties. Proton affinities and photoelectron spectra of nitriles. J. Am. Chem. Soc. 1976, 98, 2081-2085.
30. Gaussian 09; Wallingford CT, 2009.
31. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chem. Res. 2001, 34 (2), 159-170.
32. Li, A.; Muddana, H. S.; Gilson, M. K. Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575.
33. Burns, L. A.; Mayagoitia, Á. V.-.; Sumpter, B. G.; Sherrill, C. D. Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 2011, 134, 084107.
34. Amirav, A.; Even, U.; Jortner, J. Cooling of large and heavy molecules in seeded supersonic beams. J. Chem. Phys. 1980, 51, 31-42.
35. Levitt, M.; Perutz, M. F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 1988, 201, 751-754.