簡易檢索 / 詳目顯示

研究生: 王仁宏
Jen-Hung Wang
論文名稱: 超大積體電路中銅金屬化製程暨利用有機金屬化學氣相沈積法合成一維奈米結構之應用研究
Investigation on Cu Metallization in Ultra Large Scale Integration and Synthesis of One-Dimensional Nanostructures by Metalorganic Chemical Vapor Deposition
指導教授: 陳力俊
Lih-juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 180
中文關鍵詞: 銅金屬化一維奈米
外文關鍵詞: Cu Metallization, one-dimesional nanostructures
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分: 在超大積體電路中的金屬化製程
    本部分主要研究金屬阻障層(Ta,TaN)與多孔隙低介電材料(多孔的HSQ,PPSZ)在超大積體電路製程中金屬化的應用。尤其探討關於這些材料的物理和電子特性。
    用不同比例氮氣/氬氣所成長出的Ta-N 薄膜可用拉賽福回向散射分析,電子顯微鏡,X射線繞射和片電阻測量分析其性質。
    用純氬氣,10%,20%,30%,40%,50%,60% 氮氣/氬氣 所分別成長出的Ta和Ta-N薄膜微結構分別是□-Ta和bcc-Ta,bcc-Ta,bcc-TaNx,晶格擴張的bcc-TaNx,hcp-Ta2N,fcc-TaN 和fcc-TaN(接近無結晶型)。而且隨著氮濃度的增加我們發現薄膜的電阻率也隨之增加。並且成長在這些TaN上的銅膜,其中銅(111)/(200)比率隨Ta-N薄膜中的氮濃度增加而減少。
    我們已經利用傅立葉轉換紅外線分析儀,電子顯微鏡,歐傑電子分析儀,以及電流電壓分析器和電容電壓分析器來測量多孔隙HSQ的材料與電子特性。其中的孔洞大小約2 nm而且形狀約為球狀並隨機均勻分佈在XLK薄膜內。在500度退火30分鐘之後,在銅與XLK薄膜之間發現一層光滑的無結晶性的物質其中含有銅與氧的成分。而在600度退火30分鐘之後,銅被發現擴散進入XLK薄膜內部。
    由於內部孔洞的高密集度,所以同樣多孔隙的polysilazane(PPSZ)薄膜的介電常數可以低到2.2。在550度30分鐘退火之後,由於來自PPSZ的SiO解離出來,並且與銅產生反應因而產生在銅和PPSZ薄膜之間形成銅矽化物。銅矽化物與氧起反應在室溫形成銅和SiO2。在550度退火30分鐘之後的PPSZ薄膜,發現其漏電流在室溫時隨著暴露在空氣中的日子增加而減少。

    第二部分 奈米材料
    有關銅的奈米材料微結構和成長機制(銅奈米管,銅奈米球棒)已經被深入研究中。
    銅奈米管可使用矽氧化物奈米線作為模板來合成。矽氧化物奈米線可利用有機金屬化學氣相沉積方法成長上一層銅膜。而空的銅奈米管可藉由利用稀薄的HF溶液蝕刻內部的矽氧化物模板而產生。
    有機金屬氣相沈積方法已經用來成長銅奈米棒但不需要金屬催化劑。已經可成功利用有機金屬氣相沉積系統成長出五角形的銅奈米球棒且不需要特別的化學覆蓋試劑。銅奈米棒具有球棒形狀且粗端的平均直徑以及尾端分別是100 nm和50 nm。關於此種特殊五角型結構的產生主要跟双晶的側向生長與延伸生長機制有很重要的關係。最後發現銅奈米球棒具有強大的場發射特性。
    為了研究ZnS奈米管的熱穩定性,我們使用現場即時觀測的TEM系統用來觀察單一個奈米管在加熱過程中的形態變化。在ZnS-C奈米管的表面上發現接連形成4層分別具有無結晶性和具結晶的碳層。在加熱過程中發現沒有照射電子束的情況下,ZnS-C奈米管將會解離出碳和氮。並且發現電子束可使碳蒸汽穩定成長在ZnS-C(N)奈米管上並進而形成無結晶性的碳膜。


    PART Ⅰ Cu Metallization in ULSI
    Barrier layer (Ta, TaN) and porous low-k materials (porous HSQ, PPSZ) for ULSI metallization applications have been investigated. The physical and electrical characteristics of these materials have been investigated.
    The microstructures and phases of Ta-N films deposited with various N2/Ar gas mixtures have been investigated by Rutherford backscattering spectrometry, transmission electron microscope, X-ray diffraction, and sheet resistance measurement.
    Ta and Ta-N films sputtered with pure Ar, 10%, 20%, 30%, 40%, 50%, and 60% N2/Ar gas ratios were found to be a mixture of □-Ta and bcc-Ta, bcc-Ta, bcc-TaNx, expanded bcc-TaNx, hcp-Ta2N, fcc-TaN, and fcc-TaN (nearly amorphous) phases, respectively. The resistivity was found to increase with nitrogen content in samples deposited with 10 to 60% N2/Ar. For Cu layers deposited on these films, Cu (111)/(200) ratio was decreased with the nitrogen content of Ta-N films.
    The structural and electrical properties of porous hydrogen silsesquioxane (XLK) have been characterized using a combination of Fourier transform infrared spectroscopy, transmission electron microscope, Auger electron spectroscopy, current-voltage analyzer and capacitance-voltage analyzer. The pores, about 2 nm in size and of spherical shape, were distributed randomly and uniformly in the XLK film. A smooth amorphous-like layer including Cu-O-Si was found to form between Cu and the XLK film after annealing at 500 □C for 30 min. Cu was found to diffuse into XLK film after annealing at 600 □C for 30 min.
    The dielectric constant of porous polysilazane (PPSZ) film was as low as 2.2 owing to the high porosity and uniformity of the film. The copper silicide was found to form between Cu and the PPSZ film after annealing at 550 □C for 30 min due to the SiO desorption from PPSZ. The copper silicide reacts with oxygen to form Cu and SiO2 at room temperature. The leakage current of the broken PPSZ film after annealing at 550 □C for 30 min was found to decrease with exposure in air for a few days at room temperature.

    PART Ⅱ Nanostructures
    Synthesis and growth mechanism of Cu nanostructures (Cu nanotubes, Cu nanobats) have been investigated.
    . Cu nanotubes have been synthesized using silicon oxide nanowires as templates. The silicon oxide nanowires were coated with a thin and uniform copper layer by metalorganic chemical vapor deposition (MOCVD) method. Hollow Cu nanotubes were then produced by etching away the inner silicon oxide templates with dilute HF solution.
    Metal-organic chemical vapor deposition method has been used to grow Cu nanorod without metal catalysts. Pentagonal Cu nanobats with five-fold symmetry were successfully synthesized without capping reagents by MOCVD. Cu nanorods are of bat shape and the average diameters of the head and tail of the Cu nanobats are 100 nm and 50 nm, respectively. Both elongation along the five-fold symmetry axis and lateral growth of exterior twins were found to be important in the growth of pentagonal Cu nanobats. The Cu nanobats possess strong field emission characteristics.
    In order to investigate the stability of ZnS nanotubes, in-situ TEM was used to observe the morphological changes in a heating process. Four amorphous and crystalline C layers were found to form consecutively on the surface of ZnS-C nanotubes. C and N species would decompose and evaporate from ZnS-C nanotubes. The electron beam stabilized the C vapor and promoted the formation of amorphous C layer on the ZnS-C(N) nanotubes.

    Contents Acknowledgments ------------------------------------------------------------ Ⅴ Abstract ---------------------------------------------------------------------- Ⅵ List of Abbreviations and Acronyms-------------------------------------- Ⅸ PART □. INTRODUCTION Chapter 1. Cu Metallization in ULSI 1.1 An Overview ------------------------------------------------------ 1 1.2 Diffusion Barrier Layers ---------------------------------------- 6 1.3 Low Dielectric Constant Materials ---------------------------- 7 1.3.1 Dense Low-k Dielectric Materials ---------------------- 9 1.3.2 Porous Ultra Low Dielectric Constant Materials ----- 11 Chapter 2. Nanotechnology 2.1 An Overview ----------------------------------------------------- 14 2.2 One-dimensional (1D) nanostructures ------------------------ 15 2.2.1 Nanowires ------------------------------------------------- 15 2.2.2 Nanotubes ------------------------------------------------- 21 2.3 Organization of the Thesis ------------------------------------- 22 Part II. EXPERIMENTAL PROCEDURES Chapter 3. Experimental Procedures 3.1 Chemical Vapor Deposition System -------------------------- 25 3.2 Thermal Annealing --------------------------------------------- 26 3.3 Sheet Resistance Measurement ------------------------------- 26 3.4 Glancing Angle XRD (GIXRD) Analysis ------------------- 27 3.5 Transmission Electron Microscope Observation ----------- 28 3.6 Energy Dispersion Spectrometer (EDS) Analysis ---------- 28 3.7 Composition-Depth Profiling Analysis by Auger Electron Spectroscopy ----------------------------------------------------- 28 3.8 Scanning Electron Microscope Observation ---------------- 29 3.9 Field Emission Measurements -------------------------------- 29 Part Ⅲ RESULTS AND DISCUSSIONS Chapter 4. Ta and Ta-N Diffusion Barriers Sputtered with Various N2/Ar Ratios for Cu Metallization 4.1 Introduction ------------------------------------------------------ 31 4.2 Experimental Procedures --------------------------------------- 32 4.3 Results and Discussion ---------------------------------------- 33 4.4 Summary and Conclusions ----------------------------------- 39 Chapter 5.Structural and Electrical Characteristics of Low-Dielectric Constant Porous Hydrogen Silsesquioxane for Cu Metallization 5.1 Introduction ------------------------------------------------------ 40 5.2 Experimental Procedures -------------------------------------- 41 5.3 Results and Discussion ---------------------------------------- 43 5.4 Summary and Conclusions ------------------------------------ 49 Chapter 6. Structural Characteristics and Interfacial Reactions of Low Dielectric Constant Porous Polysilazane for Cu Metallization 6.1 Introduction ----------------------------------------------------- 51 6.2 Experimental Procedures -------------------------------------- 52 6.3 Results and Discussion ----------------------------------------- 53 6.4 Summary and Conclusions ------------------------------------- 57 Chapter 7. Synthesis of Cu nanotubes with silicon oxide nanowire templates by metalorganic chemical vapor deposition method 7.1 Introduction ------------------------------------------------------ 58 7.2 Experimental Procedures --------------------------------------- 59 7.3 Results and Discussion ----------------------------------------- 61 7.4 Summary and Conclusions ------------------------------------- 62 Chapter 8. Synthesis and growth mechanism of pentagonal Cu nanobats with strong field emission characteristics 8.1 Introduction ------------------------------------------------------ 64 8.2 Experimental Procedures --------------------------------------- 65 8.3 Results and Discussion ----------------------------------------- 66 8.4 Summary and Conclusions ------------------------------------- 70 Chapter 9. In-situ Observation of Heating ZnS-C Nanotubes in Vacuum Condition 9.1 Introduction ------------------------------------------------------- 71 9.2 Experimental Procedures --------------------------------------- 73 9.3 Results and Discussion ----------------------------------------- 74 9.4 Summary and Conclusions ------------------------------------- 76 PART Ⅳ. SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS Chapter 10. Summary and Conclusions ------------------------------- 78 Chapter 11. Suggestions for Possible Future Works ---------------- 82 References ------------------------------------------------------------------- 84 List of Tables --------------------------------------------------------------- 107 Tables ------------------------------------------------------------------------ 108 Figure Captions ------------------------------------------------------------ 114 Figures ----------------------------------------------------------------------- 120 Publications List ----------------------------------------------------------- 177

    References
    Chapter 1
    [1.1]The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, CA, 2004 edition & 2005 update.
    [1.2] S. P. Murarka and S. W. Hymes, “Copper metallization for ULSI and beyond,” Critical Reviews in Solid State and Materials Science 20, 87-124 (1995)
    [1.3]. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P.C. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, “Copper dual damascene wiring for sub-0.25 □m CMOS technology”, Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, 151-153.
    [1.4] R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L.Y. Chen, S. Ramaswami, and D. Carl, “Properties of copper films prepared by chemical vapor deposition for advanced metallization of microelectronic devices,” J. Electrochem. Soc. 146, 3248-3254 (1999).
    [1.5] R. Sharangpani and R. Singh, “A comparative study of spin-on and chemical vapor deposited teflon amorphous fluoropolymer thin films,” J. Electrochem. Soc. 144, 2924-2928 (1997).
    [1.6] S. Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, and T. Lii, “Integration of multi-level copper metallization into a high performance sub-0.25 □m CMOS technology”, Devices, Circuits and Systems, 1998. Proceedings of the 1998 Second IEEE International Caracas Conference, 1998, 146-152.
    [1.7] A. Deutsch, H. Smith, G. V. Kopcsay, D. C. Edelstein, and P. W. Coteus, “On-chip wiring design challenges for GHz operation,” Electrical Performance of Electronic Packaging, Piscataway, New Jersey, 45-48 (1999) .
    [1.8] R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications,” Microelectronic Engineering 50, 375-381 (2000).
    [1.9] P. C. Andricacos, “Copper on-chip interconnections”, Interface (USA), Spring, 32-37 (1999).
    [1.10] M. T. Bohr, “Interconnect scaling – the real limiter to high performance ULSI,” 1995 IEDM Technical Digest, 241-244 (1995)
    [1.11] C. G. Cruzan and H. A. Miley, “ Cuprous-cupric oxide films on copper,” J. Appl. Phys. 11, 631-634 (1940).
    [1.12] R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 2nd Edition, John Wiley & Sons, Inc. 1-56 (1986).
    [1.13] K. Hinode, Y. Homma, M. Horiuchi, and T. Takahashi, “Morphology-dependent oxidation behavior of reactively sputtered titanium-nitride films,” J. Vac. Sci. Technol. A 15, 2017-2022 (1997).
    [1.14] A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163-169 (1996).
    [1.15] Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J. D. Luttmer, and R. H. Havemann, “Integrated barrier/plug fill schemes for high aspect ratio Gb DRAM contact metallization,” Thin Solid Films 320, 73-76 (1998).
    [1.16] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” J. Vac. Sci. Technol. B 14, 3263-3269 (1996).
    [1.17] J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew, “Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization,” J. Vac. Sci. Technol. B 20, 1522-1526 (2002).
    [1.18] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada and H. Komiyama, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition,” Appl. Phys. Lett. 68, 832-834 (1996).
    [1.19] A. Zenasni, P. Raynaud, S. Sahli, S. Rebiai, Y. Segui, “Investigation on the origin of dielectric constant evolution in films deposited from organosilicon molecules in microwave DECR plasma reactor,” Surface & Coatings Technology 174, 162-165 (2003).
    [1.20] K. M. Takahashi, “Electroplating copper onto resistive barrier films,” J. Electrochem. Soc. 147, 1414-1417 (2000).
    [1.21] K. M. Takahashi and M. E. Gross, “Transport phenomena that control electroplated copper filling of submicron vias and trenches,” J. Electrochem. Soc. 146, 4499-4503 (1999).
    [1.22] T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147, 4524-4535 (2000).
    [1.23] C. T. Chua, G. Sarkar, and X. Hu, “In situ characterization of methylsilsesquioxane curing,” J. Electrochem. Soc. 145, 4007-4011 (1998).
    [1.24] M. J. Loboda, C. M. Grove, R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145, 2861-2865 (1998).
    [1.25] C. Hu, M. Morgen, P. S. Ho, A. Jain, W. N. Gill, J. L. Plawsky, P. C. Wayner, “Thermal conductivity study of porous low-k dielectric materials,” Appl. Phys. Lett. 77, 145-147 (2000).
    [1.26] Y. Uchida, T. Katoh, S. Sugahara, M. Matsumura, “Chemical vapor deposition based preparation on porous silica films,” Jpn. J. Appl. Phys. Lett. 39, 1155-1157 (2000).
    [1.27] Y. L. Cheng, Y. L. Wang, C. P. Liu, Y. L. Wu, K. Y. Lo, C. W. Liu, J. K. Lan, A. Chyung, M. S. Feng, “Integration of a stack of two fluorine doped silicon oxide film with ULSI interconnect metallization,” Materials Chemistry & Physics 83, 150-157 (2004).
    [1.28] G. Passemard, P. Fugier, P. Noel, F. Pires, O. Demolliens, “Study of fluorine stability in fluoro-silicate glass and effects on dielectric properties,” Microelectronic Engineering 33, 335-342 (1997).
    [1.29] Z. C. Wu, C. C. Wang, T. G. Wu, Y. L. Liu, P. S. Chen, Z. M. Zhu, M. C. Chen, J. F. Chen, C. I. Chang, L. J. Chen, “Electrical reliability issues of integrating thin Ta and TaN barriers with Cu and low-K dielectric,” J. Electrochem. Soc. 146, 4290-4297 (1999).
    [1.30] K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectronics International 20, 11-22 (2003).
    [1.31] T. C. Chang, P. T. Liu, F. Y. Shih, S. M. Sze, “Effects of hydrogen on electrical and chemical properties of low-k hydrogen silsesquioxane as an intermetal dielectric for nonetchback processes,” Electrochem. and Solid-State Lett. 2, 390-392 (1999).
    [1.32] T. C. Chang, P. T. Liu, Y. S. Mor, S. M. Sze, Y. L. Yang, M. S. Feng, F. M. Pan, B. T. Dai, and C. Y. Chang, “The novel improvement of low dielectric constant methylsilsesquioxane by N2O plasma treatment,” J. Electrochem. Soc. 146, 3802-3806 (1999).
    [1.33] P. T. Liu, T. C. Chang, H. Su, Y. S. Mor, Y. L. Yang, H. Chung, J. Hou, S.M. Sze, “Improvement in integration issues for organic low-k hybrid-organic-siloxane-polymer,” J. Electrochem. Soc. 148, F30-F34 (2001).
    [1.34] Y. Toivola, J. Thurn and R. F. Cook, “Structural, electrical, and mechanical properties development during curing of low-k hydrogen silsesquioxane films,” J. Electrochem. Soc. 149, F9-F17 (2002).
    [1.35] H. Landies, P. Burke, W. Cote, W. Hill and C. Hoffman, “Integration of chemical-mechanical polishing into CMOS integrated circuit manufacturing,” Thin Solid Films 220, 1-5 (1991).
    [1.36] D. Parmanik, “Integrating dielectrics into sub-half-micron multilevel metallization circuits,” Solid State Technol. 38, 69-74 (1995).
    [1.37] D. Sylvester, Hu Chenming, O. S. Nakagawa, “Interconnect scaling: signal integrity and performance in future high-speed CMOS designs,” VLSI Technology Symposium, 42-43 (1998).
    [1.38] L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90, 32-72 (1990).
    [1.39] M. H. Jo, H. H. Park, D. J. Kim, S. H. Hyun, S. Y. Choi and J. T. Paik, “SiO2 aerogel film as a novel intermetal dielectric,” J. Appl. Phys. 82, 1299-1304 (1997).
    [1.40] S. Yu, T. K. S. Wong, K. Pita, X. Hu, and V. Ligatchev, “Surface modified silica mesoporous films as a low dielectric constant intermetal dielectric,” J. Appl. Phys. 92, 3338-3344 (2002).
    [1.41] A. M. Padovani, L. Rhodes, S. A. B. Allen, and Paul A. Kohl, “Chemically bonded porogens in methylsilsesquioxane,” J. Electrochem. Soc. 149, F161-F170 (2002).
    [1.42] C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller and J. F. Remenar et al., “Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates,” Chem. Mater. 11, 3080-3085 (1999).
    [1.43] The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, CA, 2003.

    Chapter 2
    [2.1] Z. L. Wang, “Characterization of Nanophase Materials”, Wiley-VCH, New York, 2000.
    [2.2] M. A. Kastner, “Artificial atoms,” Phys. Today 46, 24-31 (1993).
    [2.3] L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chem. Rev. 93, 2693- 2730 (1993).
    [2.4] D. D. Awschalom and D. P. DiVincenzo, “Complex dynamics of mesoscopic magnets,” Phys. Today 48, 43-48 (1995).
    [2.5] H. S. Nalwa (ed.), “Handbook of Nanostructured Materials and Nanotechnology,” Academic, New York, USA, 2000.
    [2.6] V. M. Shalaev and M. Moskovits (eds.), “Nanostructured Materials: Clusters, Composite, and Thin Films,” American Chemical Society, Washington, DC, USA, 1997.
    [2.7] A. S. Edelstein and R. C. Cammarata (eds.), “Nanomaterials : Synthesis, Properties, and Applications,” Institute of Physics, UK, 1996.
    [2.8] P. Yang, Y. Wu, and R. Fan, “Inorganic semiconductor nanowires,” J. Nanoscience 1, 1-39 (2002).
    [2.9] (a) Z. L. Wang, “Characterizing the structure and properties of individual wire-like nanoentities,” Adv. Mater. 12, 1295-1298 (2000).
    [2.10] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimentional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353-389 (2003).
    [2.11] Z. L. Wang, Y. Liu, and Z. Zhang, “Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications Ⅰ,” Academic, New York, USA, 2003.
    [2.12] C. R. Martin, “Nanomaterials: A membrane-based synthetic approach,” Science 266, 1961-1964 (1994).
    [2.13] J. A. Venables, “ Introduction to Surface and Thin Film Process,” Cambridge University press, Cambridge, UK, 2000.
    [2.14] Z. L. Wang, “Transmission electron microscopy of shape-controlled nanocrystals and their assemblies,” J. Phys. Chem. B 104, 1153-1175 (2000).
    [2.15] Y. Sun, Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176-2179 (2002).
    [2.16] J. S. Bradley, B. Tesche, W. Busser, M. Maase, and M. T. Reetz, “Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids,” J. Am. Chem. Soc. 122, 4631-4636 (2000).
    [2.17] X. F. Duan, C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2000).
    [2.18] Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605-607 (2000).
    [2.19] C. C. Chen and C. C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738-741 (2000).
    [2.20] M. H. Huang, Y. Wu, H. Feick, E. webber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2000).
    [2.21] W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12, 1343-1345 (2000).
    [2.22] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995).
    [2.23] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    [2.24] H. Dai, “Carbon nanotubes: synthesis, integration, and properties,” Acc. Chem. Res. 35, 1035-1044 (2002).
    [2.25] D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin, “Smart nanotubes for bioseparations and biocatalysis,” J. Am. Chem. Soc. 124, 11864-11865 (2002).
    [2.26] J. Yang, Y. C. Liu, H. M. Lin, and C. C. Chen, “A chain-structure nanotubes: growth and characterization of single-crystal Sb2S3 nanotubes via a chemical vapor transport reaction,” Adv. Mater. 16, 713-716 (2004).
    [2.27] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
    [2.28] Y. Sun and Y. Xia, “Multiple-walled nanotubes made of metals,” Adv. Mater. 16, 264-268 (2004).
    [2.29] J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257-259 (2003).
    [2.30] Y. Sun and Y. Xia, ”Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” J. Am. Chem. Soc. 126, 3892-3901 (2004).
    [2.31] Y. Sun, B. Mayers, and Y. Xia, “Metal nanostructures with hollow interiors,” Adv. Mater. 15, 641-646 (2003).
    [2.32] M. Steinhart, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, and J. H. Wendorff, “Palladium nanotubes with tailored wall morphologies,” Adv. Mater. 15, 706-709 (2003).
    [2.33] P. Hoyer, “Semiconductor nanotube formation by a two-step template process,” Adv. Mater. 8, 857-859 (1996).
    [2.34] R. A. Caruso and M. Antonietti, “Sol-gel nanocoating: an approach to the preparation of structured materials,” Chem. Mater. 13, 3272-3282 (2001).
    [2.35] M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, and U. Gosele, “Polymer nanotubes by wetting of ordered porous templates,” Science 296, 1997 (2002).
    [2.36] C. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, and M. Nath, “Surfactant-assisted synthesis of semiconductor nanotubes and nanowires,” Appl. Phys. Lett. 78, 1853-1855 (2001).
    [2.37] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, P. Yang, “Single-crystal gallium nitride nanotubes,” Nature 422, 599-602 (2003).
    [2.38] M. Zhang, E. Cicocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirous, “Bright visible photoluminescence from silica nanotube flakes prepared by the sol–gel template method,” Appl. Phys. Lett. 80, 491-493 (2002).
    [2.39] M. Nath and C. N. R. Rao, “New metal disulfide nanotubes,” J. Am. Chem. Soc. 123, 4841-4842 (2001).
    [2.40] L. Margwlis, G. Salltra, R. Tenne, and M. Talianker, “Nested fullerene-like structures,” Nature 365, 113-114 (1993).
    [2.41] B. Mayers and Y. Xia, “Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds,” Adv. Mater. 14, 279-282 (2002).

    Chapter 4
    [4.1] T. L. Alford, J. Li, J. W. Mayer, and S. Q. Wang, “Copper-based metallization and interconnects for ultra-large-scale integration applications,” Thin Solid Films 262, vii-viii (1995).
    [4.2] K. W. Kwon, C. Ryu, R. Sinclair, and S. S. Wong, “Evidence of heteroepitaxial growth of copper on beta-tantalum,” Appl. Phys. Lett. 71, 3069-3071 (1997).
    [4.3] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” J. Vac. Sci. Technol. B 14, 3263-3269 (1996).
    [4.4] C. R. Aita, T. A. Myers, and W. J. LaRocca, “Glow discharge mass spectrometry of sputtered tantalum nitride,” J. Vac. Sci. Technol. 18, 324-327 (1981).
    [4.5] P. Catania, J. P. Doyle, and J. J. Cuomo, “Low resistivity body-centered cubic tantalum thin films as diffusion barriers between copper and silicon,” J. Vac. Sci. Technol. A 10, 3318-3321 (1992).
    [4.6] M. Stavrev and D. Fischer, “Behavior of thin Ta-based films in the Cu/barrier/Si system,” J. Vac. Sci. Technol. A 17, 993-1001 (1999).
    [4.7] M. Stavrev and D. Fischer, “Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films,” Thin Solid Films 307, 79-88 (1997).
    [4.8] X. Sun, E. Kolawa, and J. S. Chen, “Properties of reactively sputter-deposited Ta---N thin films,” Thin Solid Films 236, 347-351 (1993).
    [4.9] R. E. Reed-Hill, Physical Metallurgy Principles, 3rd ed. (PWS-KENT Publishing Company, Boston, USA, 1992), p. 274

    Chapter 5
    [5.1] The National Technology Roadmap for Semiconductors; Semiconductor Industry Association: San Jose, CA, 2004.
    [5.2] M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. S. Ho, “Low dielectric constant materials for ULSI interconnects,” Annu. Rev. Mater. Sci., 30, 645-680 (2000).
    [5.3] H. J. Lee, E. K. Lin, H. Wang, W. L. Wu, W. Chen, and E. S. Moyer, “Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions,” Chem. Mater. 14, 1845-1852 (2002).
    [5-4] N. Aoi, “Novel porous films having low dielectric constants synthesized by liquid phase silylation of spin-on glass sol for intermetal dielectrics” Jpn. J. Appl. Phys. 36, 1355-1359 (1997).
    [5-5] A. M. Padovani, L. Rhodes, L. Riester, G. Lohman, B. Tsuie, J. Conner, S. A. B. Allen, and P. A. Kohl, “Porous methylsilsesquioxane for low-k dielectric applications,” Electrochem. Solid-State Lett. 4, F25-F28 (2001).
    [5-6] S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmanis, J. C. Pai, Y. S. Obeng, J. Seputro, E. K. Lin, H. J. Lee, J. Sun, and D. W. Gidley, “Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers, “ Chem. Mater. 14, 369-374 (2002).
    [5-7] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy : A Text Book for Materials Science,” Plenum Press, New York, p. 148 and p.451 (1996).
    [5.8] P. T. Liu, T. C. Chang, K. C. Hsu, T. Y. Tseng, L. M. Chen, C. J. Wang, and S. M. Sze, “Characterization of porous silicate for ultra-low k dielectric application,” Thin Solid Films 414, 1-6 (2002).
    [5.9] T. C. Chang, M. F. Chou, Y. J. Mei , J. S. Tsang, F. M. Pan, , W. F. Wu, M. S. Tsai, C. Y. Chang, F. Y. Shih, and H. D. Huang, ” Enhancing the thermal stability of low dielectric constant hydrogen silsesquioxane by ion implantation,” Thin Solid Films 332, 351-355 (1998).
    [5.10] H. C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335, 186-191 (1998).
    [5.11] P. T. Liu, T. C. Chang, S. M. Sze, F. M. Pan, Y. J. Mei, W. F. Wu, M. S. Tsai, B. T. Dai, C. Y. Chang, F. Y. Shih, and H. D. Huang, ” The effects of plasma treatment for low dielectric constant hydrogen silsesquioxane (HSQ),” Thin Solid Films 332, 345-350 (1998).
    [5.12] E. K. Lin, H. J. Lee, G. W. Lynn, W. L. Wu, and M. L. O’Neill, “Structural characterization of a porous low-dielectric-constant thin film with a non-uniform depth profile,” Appl. Phys. Lett., 81, 607-609 (2002)
    [5.13] J. S. Jeng and J. S. Chen, “Characterization of the thermal reactions for Cu/thermal SiO2 and Cu/hydrogen silsesquioxane on silicon,” J. Electrochem. Soc., 148, G232-G236 (2001).
    [5.14] J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew, “Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization,” J. Vac. Sci. Technol. B 20, 1522-1526 (2002).

    Chapter 6
    [6.1] The National Technology Roadmap for Semiconductors; semiconductor Industry Association: San Jose, CA, 2004.
    [6.2] M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. S. Ho, “Low dielectric constant materials for ulsi interconnects,” Annu. Rev. Mater. Sci., 30, 645-680 (2000).
    [6.3] H. J. Lee, E. K. Lin, H. Wang, W. L. Wu, W. Chen, and E. S. Moyer, “Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions,” Chem. Mater. 14, 1845-1852 (2002).
    [6.4] S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmanis, J. C. Pai, Y. S. Obeng, J. Seputro, E. K. Lin, H. J. Lee, J. Sun, and D. W. Gidley, “Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers,” Chem. Mater., 14, 369-374 (2002).
    [6.5] K. Muraoka, “Reaction steps of silicidation in ZrO2/SiO2/Si layered structure,” Appl. Phys. Lett. 80, 4516-4518 (2002) .
    [6.6] C. Y. Wang, Z. X. Shen, and J. Z. Zheng, “Thermal cure study of a low-k methyl silsesquioxane for intermetal dielectric application by FTIR spectroscopy,” Appl. Spectrosc. 54, 209-213 (2000)
    [6.7] C. Y. Wang, Z. X. Shen, and J. Z. Zheng, “High temperature properties of a low dielectric constant organic spin-on glass for multilevel interconnects,” Appl. Spectrosc. 55, 1347-1351 (2001).
    [6.8] A. T. Kohl, R. Mimna, R. Shick, L. Rhodes, Z. L. Wang, and P. A. Kohl, “Low k, porous methyl silsesquiozane and spin-on-glass,” Electrochem. Solid-State Lett. 2, 77-79 (1999).
    [6.9] A. M. Padovani, L. Rhodes, S. A. B. Allen, and P. A. Kohl, ”Chemically bonded porogens in methylsilsesquioxane,” J. Electrochem. Soc. 149, F161-F170 (2002).
    [6.10] J. H. Wang, W. J. Chen, T. C. Chang, P. T. Liu, S. L. Cheng, J. Y. Lin, and L. J. Chen, “Structural and electrical characteristics of low-dielectric constant porous hydrogen silsesquioxane for Cu metallization,” J. Electrochem. Soc. 150, F141-F146 (2003).
    [6.11] R. Tromp, G. W. Rubloff, P. Balk, and F. K. LeGoues, “High-temperature SiO2 decomposition at the SiO2/Si interface,” Phys. Rev. Lett. 55, 2332-2335 (1985).
    [6.12] K. E. Johnson and T. Engel, “Direct measurement of reaction kinetics for the decomposition of ultrathin oxide on Si (001) using scanning tunneling microscopy,” Phys. Rev. Lett. 69, 339-342 (1992).
    [6.13] H. Watanabe, K. Fujita, and M. lchikawa, “Thermal decomposition of ultrathin oxide layers on Si(111) surfaces mediated by surface Si transport,” Appl. Phys. Lett. 70, 1095-1097 (1997).
    [6-14] H. Y. Huang and L. J. Chen, “Growth kinetics of SiO2 on (001) Si catalyzed by Cu3Si at elevated temperatures,” J. Appl. Phys. 88, 1412-1417 (2000).
    [6-15] W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. F. Shang, Z. W. Pan, C. S. Lee, S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12, 1343-1345 (2000).
    [6-16] C. S. Liu and L. J. Chen, “Catalytic oxidation of (001)Si in the presence of Cu3Si at room temperature,” J. Appl. Phys. 74, 3611-3613 (1993).
    [6-17] C. S. Liu and L. J. Chen, “Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on atomically cleaned (111)Si. II. Oxidation of silicon catalyzed by □-Cu3Si at room temperature,” J. Appl. Phys. 74, 5507-5509 (1993).
    [6-18] C. S. Liu and L. J. Chen, “The dependence of room-temperature oxidation of silicon catalyzed by Cu3Si on the silicide grain size,” J. Appl. Phys. 75, 2730-2732 (1994).
    [6-19] J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew, “Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization,” J. Vac. Sci. Technol. B 20, 1522-1526 (2002).

    Chapter 7
    [7.1] R. M. Yadav, A. K. Singh, and O. N. Srivastava, “Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation,” J. Nanosci. Nanotech. 3, 223-225 (2003).
    [7.2] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    [7.3] H. Dai, “Carbon nanotubes: synthesis, integration, and properties,” Acc. Chem. Res. 35, 1035-1044 (2002).
    [7.4] D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin, “Smart nanotubes for bioseparations and biocatalysis,” J. Am. Chem. Soc., 124, 11864-11865 (2002).
    [7.5] C. C. Chen and C. C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738-741 (2000).
    [7.6] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos,” Shape control of CdSe nanocrystals,” Nature 404, 59-61 (2000).
    [7.7] Y. Xia and P. Yang, “Chemistry and physics of nanowires,” Adv. Mater. 15, 351-352 (2003).
    [7.8] J. Yang, Y. C. Liu, H. M. Lin, and C. C. Chen, “A chain-structure nanotube: growth and characterization of single-crystal Sb2S3 nanotubes via a chemical vapor transport reaction,” Adv. Mater. 16, 713-716 (2004).
    [7.9] M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang,” A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods,” Chem. Commun. 15, 1884-1885 (2003).
    [7.10] K. J. Ziegier, P. A. Harrington, K. M. Ryan, T. Crowley, J. D. Holmes, and M. A. Morris, “Supercritical fluid preparation of copper nanotubes and nanowires using mesoporous templates,” J. Phys.: Condens. Matter 15, 8303-8314 (2003).
    [7.11] X. R. Ye, H. F. Zhang, Y. Lin, L. S. Wang, and C. M. Wai, “Modification of SiO2 nanowires with metallic nanocrystals from supercritical CO2,” J. Nanosci. Nanotech. 4, 82-85 (2004).
    [7.12] J. Fink, C. J. Kiely, D. Bethell, and D. J. Schiffrin, “Self-organization of nanosized gold particles,” Chem. Mater. 10, 922-926 (1998).
    [7.13] P. Y. Su, J. C. Hu, S. L. Cheng, J. M. Liang, and L. J. Chen, “Self-assembled hexagonal Au particle networks on silicon from Au nanoparticle solution,” Appl. Phys. Lett. 84, 3480-3482 (2004).
    [7.14] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotech. 3, 341-346 (2003).
    [7.15] J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen, and L. C. Chen, “Growth and optical properties of self-organized Au2Si nanospheres pea-podded in a silicon oxide nanowires,” Adv. Mater. 14, 1847-1850 (2002).

    Chapter 8
    [8.1] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, ”Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289-1292 (2001).
    [8.2] a) J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    b) Z. Zhang, X. Sun, M. S. Dresselhaus, and J. Y. Ying, “Electronic transport properties of single-crystal bismuth nanowire arrays,” Phys. Rev. B 61, 4850-4861 (2000).
    c) M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park, “Resonant electron scattering by defects in single-walled carbon nanotubes,” Science 291, 283-285 (2001).
    [8.3] Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165-168 (2002).
    [8.4] R. F. Service, “Breakthrough of the year: molecules get wired,” Science 294, 2442-2443 (2001).
    [8.5] P. L. Gai and M. A. Harmer, “Surface atomic defect structures and growth of gold nanorods,” Nano Lett. 2, 771-774 (2002).
    [8.6] Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303-305 (2003).
    [8.7] M. Y. Yen, C. W. Chiu, C. H. Hsia, F. R. Chen, J. J. Kai, C. Y. Lee, and H. T. Chiu, “Synthesis of cable-like copper nanowires,” Adv. Mater. 15, 235-237 (2003).
    [8.8] H. Y. Huang and L. J. Chen, “Growth kinetics of SiO2 on (001) Si catalyzed by Cu3Si at elevated temperatures,” J. Appl. Phys. 88, 1412-1417 (2000).
    [8.9] S. J. Wang, C. H. Chen, S. C. Chang, K. M. Uang, C. P. Juan, and H. C. Cheng, “Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films,” Appl. Phys. Lett. 85, 2358-2360 (2004).
    [8.10] R. C. Mani and M. K. Sunkara, “Kinetic faceting of multiply twinned diamond crystals during vapor phase synthesis,” Diamond Relat. Mater. 12, 324-329 (2003).
    [8.11] Q. Li, M. W. Shao, S. Zhang, X. Liu, G. Li, K. Jiang, and Y. Qian, “Preparation of multiply twinned palladium particles with five-fold symmetry via a convenient solution route,” J. Crystal Growth 243, 327-330 (2002).
    [8.12] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3, 955-960 (2003).
    [8.13] I. Lisiecki, A. Filankembo, H. Sack-Kongehl, K. Weiss, M. P. Pileni, and J. Urban, “Structural investigations of copper nanorods by high-resolution TEM,” Phys. Rev. B, 61, 4968-4974 (2000).
    [8.14] H. Choi and S. H. Park, “Seedless growth of free-standing copper nanowires by chemical vapor deposition,” J. Am. Chem. Soc. 126, 6248-6249 (2004).
    [8.15] C. X. Xu and X. W. Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003).
    [8.16] J. H. Wang, P. Y. Su, M. Y. Lu, L. J. Chen, C. H. Chen, and C. J. Chiu, “Synthesis of Cu nanotubes with silicon oxide nanowires templates by MOCVD,” Electrochem. Solid-State Lett. 8, C9-C11 (2005).

    Chapter 9
    [9.1] Y. Wang, T. Herricks, and Y. Xia, ” Single crystalline nanowires of lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol,” Nano Lett. 3, 1163-1166 (2003).
    [9.2] P. X. Gao, Y. Ding, and Z. L. Wang, “Crystallographic orientation-aligned ZnO nanorods grown by a Tin catalyst,” Nano Lett. 3, 1315-1320 (2003).
    [9.3] L. Guo, Y. L. Ji, H. B. Xu, P. Simon, and Z. Y. Wu, “Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure,” J. Am. Chem. Soc. 124, 14864-14865 (2002).
    [9.4] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
    [9.5] R. Tenne, L. Mrgulis, M. Genut, and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulphide,” Nature 360, 444-446 (1992).
    [9.6] Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, “High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes,” Science 267, 222-225 (1995).
    [9.7] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, “Boron nitride nanotubes,” Science 269, 966-967 (1995).
    [9.8] L. Guo, C. Liu, R. Wang, H. Xu, Z. Wu, and S. Yang, “| Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route,” J. Am. Chem. Soc. 126, 4530-4531 (2004).
    [9.9] Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, “Nanocable-aligned ZnS tetrapod nanocrystals,” J. Am. Chem. Soc. 125, 16196-16197 (2003).
    [9.10] Q. Li and C. Wang, “Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation,” Appl. Phys. Lett. 82, 1398-1400 (2003).
    [9.11] (a) C. Ma, D. Moore, J. Li, Z. L. Wang, Adv. Mater. 15, 228-231 (2003). (b) Y. C. Zhu, Y. Bando, D. F. Xue, Appl. Phys. Lett. 82, 1769-1771 (2003).
    [9.12] Y. C. Zhu, Y. Bando, and L. W. Yin, “Design and fabrication of BN-sheathed ZnS nanoarchitectures,” Adv. Mater. 16, 331-334 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE