簡易檢索 / 詳目顯示

研究生: 何銘浚
論文名稱: 微液珠之驅動與控制器設計
Driving of digital-micro-droplet and controller design
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 介電濕潤液珠控制器影像檢測液珠驅動
外文關鍵詞: EWOD, droplet controller, image Inspection and detection, droplet movement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計、製作、控制與檢測介電濕潤液珠驅動晶片,研究中使用之微液珠驅動晶片之介電層分別使用SU8 、FH6400光阻及Parylene C三種材料,並對驅動晶片架設接觸角檢測系統與液珠移動特性檢測系統。藉由此兩種檢測系統量測三種不同介電材料之個別介電濕潤特性曲線與特性,且決定在不同介電層材料下時液珠之控制電壓,完成一介電濕潤晶片實驗平台。
    將LabView撰寫的控制程式、彈簧探針陣列與控制器電路整合成一微液珠控制系統,並將介電濕潤晶片實驗平台、微液珠控制系統與高速影像攝影機整合一模組化控制器。利用模組化控制器分析液珠移動的時間,並決定控制器的最佳切換頻率,成功完成液體在一維與二維方向的驅動。此外,提出新型複合式電極,以提升液珠的位移精度。未來本論文所發展的系統可應用於生醫檢測方面。


    摘要 I 致謝 II 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2背景與動機 2 1.3微液珠基礎理論 3 1.3.1表面張力 3 1.3.2濕潤效應 4 1.3.3介電材料簡介 6 1.4文獻回顧 7 1.4.1表面結構梯度驅動法 7 1.4.2熱能驅動法 8 1.4.3光能驅動法 9 1.4.4電能驅動法 11 1.4.5磁場驅動法 12 1.4.6電磁場整合驅動法 13 1.5本文大綱 14 第二章 液珠驅動理論分析 15 2.1楊格方程式 15 2.2黎普曼方程式 16 2.3黎普曼-楊格方程式 17 2.4液珠驅動力 18 2.4.1開放式數位微流體 18 2.4.2閉合式數位微流體 20 2.5表面張力大小與接觸角變化的關係 21 第三章 數位液珠元件設計與製程 23 3.1電極設計 23 3.2基材及表面清洗程序 26 (A) 酸式清洗法 26 (B) 有機溶劑清潔法 26 3.3介電薄膜材料 27 3.3.1聚對二甲苯 28 3.3.2鐵氟龍 29 3.4微液珠控制平台製程 29 3.5製程完成之電極元件 31 第四章 實驗架設與實驗結果 34 4.1接觸角量測系統 34 4.1.1硬體架設 34 4.1.2分析軟體撰寫 35 4.1.3EWOD元件特性測試 36 4.1.4相對介電常數的反推 42 4.2數位微液珠自動控制平台 44 4.2.1硬體設計與架構 44 4.2.2控制器軟體 52 4.3數位液珠移動紀錄平台 54 4.3.1手動驅動實驗 54 4.3.2自動控制實驗 57 4.4液珠動態量測系統 60 4.4.1高速攝影機 60 4.4.2液珠動態檢測系統之硬體架設 62 4.4.3分析軟體 62 第五章 結論與未來工作 67 5.1結論 67 5.2未來工作 67

    [1] R. Feynman, “There’s the plenty room at the bottom,” Journal of Microelectromechanical Systems, vol. 1, pp.60.66, 1992.
    [2] R. Feynman, “Infinitesimal machinery,” Journal of Microelectro-
    mechanical Systems, vol. 1, pp. 4-14, 1993.
    [3] A Manz, N Graber, HM Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
    [4] S. J. Lee and S. Y. Lee, “Micro total analysis system (μ-TAS) in biotechnology,” Journal of Applied Microbiology and Biotechnology, vol. 64, pp. 289-299, 2004.
    [5] 曾繁根,2009,”奈微米生醫及流體系統簡介”,清華大學奈微米生醫及流體系統修課講義。
    [6] 黃士豪,2008,”Micro-fluid and micro-droplet”,台灣海洋大學生醫奈微流體系統技術與應用修課講義
    [7] J. T. Yang, J. C. Chen, K. J. Huang and J. A. Yeh, “Droplet manipulation on a hydrophobic textured surface with roughened patterns,” Journal of Microelectromechanical Systems, vol. 1, pp. 697-707, 2006.
    [8] A. A. Darhuber and J. P. Valentino, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable micro-heater arrays,” Journal of Microelectromechanical Systems, vol. 5, pp. 205-214, 2003.
    [9] K. Ichimura, S. K. Oh and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science, vol. 288, pp. 1624- 1626, 2000.
    [10] P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators, vol. 104 , pp. 222–228, 2003.
    [11] V. Peykov, A. Quinn and J. Ralston, “Electrowetting: a model for contact-angle saturation,” Colloid & Polymer Science, vol. 278, pp. 789-793, 2000.
    [12] S. K. Cho, H. Moon and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electro-wetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical System, vol. 12, pp. 70-80, 2003.
    [13] Y. Li, Y. Mita, L. I. Haworth, W. Parkes, M. Kubota and A. J. Walton, “Test structure for characterizing low voltage coplanar EWOD system,” Transactions on Semiconductor Manufacturing, vol. 22, pp. 88-95, 2009.
    [14] N. T. Nguyen, K. M. Ng and X. Huang, “Manipulation of ferrofluid droplets using planar coils, ” Applied Physics Letters, vol. 89, pp. 052509, 2006.
    [15] N. T. Nguyen, A. Beyzavi, K. M. Ng and X. Huang, “Kinematics and deformation of ferrofluid droplets under magnetic actuation,” Microfluid Nanofluid, vol. 3, pp. 571-579, 2007.
    [16] U. Lehmann, S. Hadjidj, V. K. Parashar, C. Vandevyver and A. Rida, “Two-dimensional magnetic manipulation of micro-droplets on a chip as a platform for bioanalytical applications,” Sensor and Actuators B:Chemical, vol. 117, pp. 457-463, 2006.
    [17] T. Ohashi, H. Kuyama and K. Suzuki, “Control of aqueous droplets using magnetic and electrostatic,” Analytica Chimica Acta, vol. 612, pp. 218-225, 2008.
    [18] M. G. Lippmann, “Relations entre les phenomenes electriques et capillaires,” Annales de Chimie et de Physique, vol. 5, pp. 494-549, 1875
    [19] 楊智淵,“複合表面之微液珠傳書與混和機制研究”,國立清華大學奈米與微機電系統工程研究所碩士論文,民國98年。
    [20] J. Lee, H. Moon, J. Fowler, T. Schoellhammer and C. J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sensors and Actuators A: Physical, vol. 95, pp. 259-268, 2002.
    [21] J. Berthier, P. Clementz, O. Raccurt, D. Jary, P. Claustre, C. Peponnet, and Y. Fouillet, “Computer aided design of an EWOD microdevice,” Sensors and Actuators A: Physical, vol. 127, pp. 283–294, 2006.
    [22] Y. W. Hsu, C. H. Chen and S. K. Fan, “Water droplet encapsulation By a quantitative and removable oil shell,” Transducers, pp. 1995-1998, Colorado, June, 2009.
    [23] L. S. Jang, C. Y. Hsu and C. H. Chen, “Effect of electrode geometry on performance of EWOD device driven by battery-based system,” Biomed Microdevices, 2009.
    [24] 曾詩閔,“數位液珠操控平台設計、控制與實作”,國立清華大學動力機械工程研究所碩士論文,民國98年。
    [25] I. Moon and J. Kim, “Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system,” Sensors and Actuators A: Physical, vol. 130-131, pp. 537-544, 2006.
    [26] Y. H. Chang, G. B. Lee, F.C. Huang, Y. Y. Chen and J. L. Lin, “Integrated polymerase chain reaction chips utilizing digital-microfluidics,” Biomed Microdevices, vol. 8, pp. 215-225, 2006.
    [27] E. Lebrasseur, M. I. A. Haq, W. K. Choi, M. Hirano, H. Tsuchiya, T. Torii, T. Higuchi, H. Yamazaki and E. Shinohara, “Two-dimensional electrostatic actuation of droplets using a single electrode panel and development of disposable plastic film card,” Sensors and Actuators, vol. 136, pp. 358-366, 2007.
    [28] A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.-C. Robert and J. Legrand, “Structural and dielectric study of parylene C thin films,” Applied Physics Letters, vol. 94, pp. 152901, 2009.
    [29] http://www2.dupont.com/Teflon_Industrial/en_US/index.html
    [30] J. Melai, C. Salm, S. Smits, J. Visschers and J. Schmitz, “The electrical conduction and dielectric strength of SU-8,” Journal of Micromechanics and Microengineering, vol. 19, pp. 065012, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE