簡易檢索 / 詳目顯示

研究生: 胡芝瑋
Hu, Chih Wei
論文名稱: 藉同步輻射及中子技術研究釩摻雜之磷酸鋰鐵在鋰離子電池中的化學與晶體結構相變行為
Studies on the correlation between the chemical and crystalline structures for the vanadium doped LiFePO4 in lithium-ion batteries via in-situ synchrotron radiation and neutron techniques
指導教授: 李志浩
Lee, Chih Hao
許博淵
Shew, Bor Yuan
口試委員: 溫添進
Wen, Ten Chin
張家欽
Chang, Chia Chin
胡啟章
Hu, Chi-Chang
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 80
中文關鍵詞: 鋰離子電池磷酸鋰鐵釩摻雜臨場實驗
外文關鍵詞: lithium-ion battery, LiFePO4, vanadium doping, in-situ experiment
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃是利用同步輻射以及中子繞射技術有系統的研究磷酸鋰鐵正極材料,在少量氧化釩添加後其材料本身與充放電期間結構的變化,進而了解氧化釩的添加對磷酸鋰鐵材料電化學性能被提升的機制。研究內容由解析原材料結構開端,演進到電池結構靜態分析與電池充放電過程中的動態結構演繹。原材料部份為添加及未添加氧化釩的磷酸鋰鐵粉體,整合同步輻射X光電子能譜儀、紫外光電子能譜儀、X光吸收光譜與X光繞射技術及中子繞射技術結果顯示,添加氧化釩的磷酸鋰鐵晶相中,釩傾向取代結構中鋰的位置。釩的摻雜使周圍即產生局部的鋰空缺;而這些空缺提供了額外的通道,使得鋰離子更容易遷出嵌入磷酸鋰鐵材料之中。該材料在各種不同充放電條件下半電池與全電池中的動態結構演繹以軟包型鋰電池進行解析。半電池結果顯示釩離子的添加使磷酸鋰鐵化成前後磷酸鋰鐵與磷酸鐵兩相之間的不可逆性降低~5.6%。由吸收光譜與X光繞射結果顯示此不可逆主因於釩離子驅動局部化學勢能,由XAS與UPS結果顯示此一勢能使材料的價帶能隙降低~0.4eV,使載子傳遞速度大幅提升促使正極材料在充放電過程得以快速晶相轉移,此一效應使陰極材料在高速充放電(3C)下相較對照組(添加前/90 mAhg-1)有~25%電容提升,再回到低充放電速度時仍可以維持原先的電容值(160 mAhg-1)。結合臨場X光吸收光譜、X光繞射與中子繞射結果可知,氧化釩的摻雜加速了在化成過程中電子結構與晶體結構的變化速度且更快趨於穩定。此等結構演繹變化趨勢推測,釩離子誘發的局部化學勢能將使磷酸鋰鐵正極材料在長時間與高充放電速度條件下所造成的不可逆與電容值偏低等問題有顯著改善。


    In this thesis, synchrotron and neutron techniques were performed to systematically investigate the structure evolutions and the mechanisms of enhancing the electrochemical performance of the LiFePO4 (LFP) positive electrodes in lithium-ion batteries (LIBs) by a small amount of vanadium (V) additives. The study started with the structural analysis of raw material and then evolved into the static analysis in the structure of batteries as well as kinetic investigation in the phase transition of LFP-based positive electrode materials during charge/discharge process. In the raw material studies, material characterization of the raw material reveals that V atoms substitute the Li sites in the structure and subsequently generate vacancies around Li sites, based on the results of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), X-ray absorption spectroscopy (XAS) and X-ray powder diffraction (XRPD) together with neutron powder diffraction (NPD). The V doping creates extra diffusion channels due to Li vacancies and therefore facilitates lithium ion extraction/insertion from/into positive electrode materials during charging/discharging. Furthermore, time-resolved in-situ experiments on pouch type batteries were employed in order to understand the impacts of V doping on the structure evolution of LFP, The half-cell experiments showed the irreversibility was reduced by ~5.6% in the presence of proper amounts of V doping. Results of XAS and UPS analysis indicate this improvement is attributed to the induced local chemical potential and reduction in the band gap by about 0.4 eV after V doping. Consequently, the phase transition rate and reversible specific capacity (~25% increased) at high C rate (3C) charge/discharge of LFP: V (LFPV) were substantially improved, compared to that of LFP without doping in operando LIB.

    Abstract i 摘要 ii 致謝 iii Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction and motivation 1 1.1. Aim and purpose 1 1.2 Research statement 2 1.3 General introduction to LIBs 2 1.3.1 Negative electrode material overview 5 1.3.2 Positive electrode material overview 5 1.4 Objective and approach 7 1.5. Thesis structure 8 Chapter 2. Literatures survey 9 2.1 Introduction to lithium-iron phosphate (LiFePO4) battery 9 2.2 Methods for improved performance for LFP 11 2.2.1 Carbon coating techniques 11 2.2.2 Particle size reduction 12 2.2.3 Doping 13 2.3 Phase composition 14 Chapter 3. Experimental 16 3.1 Synthesis and cell assembly 16 3.2 Structure characterization 18 3.2.1 X-ray techniques 18 3.2.2 Neutron techniques 20 Chapter 4. Results and discussion 23 4.1 Raw material characterization 23 4.1.1 Morphology and element analysis of the raw materials 23 4.1.2 Electrochemical performance 24 4.1.3 The structure studies of V in doped LFP positive electrode material 29 4.2 Phase evolution of V additive on the LFP in LIB 42 4.2.1 Static investigation 42 4.2.2 Real-time observation 46 4.3 Summary 69 Chapter 5. Conclusions 72 References 74 Appendix 79

    [1] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater., 10 (1998) 725-763.
    [2] J. Gao, J. Ying, C. Jiang, C. Wan, J. Power Sources, 166 (2007) 255-259.
    [3] M.M. Rahman, J.Z. Wang, M.F. Hassan, D. Wexler, H.K. Liu, Adv. Energy Mater., 1 (2011) 212-220.
    [4] X. Fan, L. Zou, Y.P. Zheng, F.Y. Kang, W.C. Shen, Electrochem. Solid-State Lett., 12 (2009) A199-A201.
    [5] B.G. Silbernagel, M.S. Whittingham, J. Chem. Phys., 64 (1976) 3670-3673.
    [6] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 15 (1980) 783-789.
    [7] G.G. Amatucci, J.M. Tarascon, D. Larcher, L.C. Klein, Solid State Ionics, 84 (1996) 169-180.
    [8] K. Kleiner, J. Melke, M. Merz, P. Jakes, P. Nagel, S. Schuppler, V. Liebau, H. Ehrenberg, ACS Appl. Mater. Interfaces, 7 (2015) 19589-19600.
    [9] S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, ACS Appl. Mater. Interfaces, 6 (2014) 22594-22601.
    [10] G. Yang, H.A. Ni, H.D. Liu, P. Gao, H.M. Ji, S. Roy, J. Pinto, X.F. Jiang, J. Power Sources, 196 (2011) 4747-4755.
    [11] A.V. Murugan, T. Muraliganth, P.J. Ferreira, A. Manthiram, Inorg. Chem., 48 (2009) 946-952.
    [12] J. Lim, D. Kim, V. Mathew, J. Kim, Phys. Scr., T139 (2010) 014060.
    [13] D. Rangappa, K. Sone, M. Ichihara, T. Kudo, I. Honma, Chem. Commun., 46 (2010) 7548-7550.
    [14] M.S. Whittingham, Chem. Rev., 104 (2004) 4271-4302.
    [15] O. Kazunori, in: Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp. 1-53.
    [16] N. Omar, M. Daowd, P. Van den Bossche, O. Hegazy, J. Smekens, T. Coosemans, J. Van Mierlo, Energies, 5 (2012) 2952.
    [17] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188-1194.
    [18] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas, Solid State Ionics, 130 (2000) 41-52.
    [19] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Electrochem. Solid-State Lett., 8 (2005) A409-A413.
    [20] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nature Mater., 1 (2002) 123-128.
    [21] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources, 97-8 (2001) 503-507.
    [22] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid-State Lett., 4 (2001) A170-A172.
    [23] A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc., 148 (2001) A1153-A1158.
    [24] A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc., 148 (2001) A747-A754.
    [25] A. Yamada, S.C. Chung, J. Electrochem. Soc., 148 (2001) A960-A967.
    [26] D.H. Kim, J. Kim, Electrochem. Solid-State Lett., 9 (2006) A439-A442.
    [27] M. Wagemaker, B.L. Ellis, D. Luetzenkirchen-Hecht, F.M. Mulder, L.F. Nazar, Chem. Mater., 20 (2008) 6313-6315.
    [28] V. Srinivasan, J. Newman, J. Electrochem. Soc., 151 (2004) A1517-A1529.
    [29] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno, J. Electrochem. Soc., 151 (2004) A1352-A1356.
    [30] Y. Wang, P. He, H. Zhou, Energy Environ. Sci., 4 (2011) 805-817.
    [31] A. Tonomura, Nature Mater., 5 (2006) 257-258.
    [32] C. Delacourt, P. Poizot, J.M. Tarascon, C. Masquelier, Nature Mater., 4 (2005) 254-260.
    [33] B.H. Toby, J. Appl. Crystallogr., 34 (2001) 210-213.
    [34] S.H. Chang, C.H. Chang, J.M. Juang, L.J. Huang, T.F. Lin, C.Y. Liu, C.F. Chang, D.G. Liu, K.L. Tsang, W.F. Pong, C.H. Du, S.L. Chang, Y.L. Soo, M.T. Tang, Chin. J. Phys., 50 (2012) 220-228.
    [35] D. Richard, M. Ferrand, G.J. Kearley, J. Neutron Res., 4 (1996) 33-39.
    [36] O. Haas, A. Deb, E.J. Cairns, A. Wokaun, J. Electrochem. Soc., 152 (2005) A191-A196.
    [37] A. Deb, U. Bergmann, S.P. Cramer, E.J. Cairns, Electrochim. Acta, 50 (2005) 5200-5207.
    [38] M. Giorgetti, M. Berrettoni, S. Scaccia, S. Passerini, Inorg. Chem., 45 (2006) 2750-2757.
    [39] T.H. Cho, H.T. Chung, J. Power Sources, 133 (2004) 272-276.
    [40] Z. Wang, S. Sun, D. Xia, W. Chu, S. Zhang, Z. Wu, J.Phy.Chem. C, 112 (2008) 17450-17455.
    [41] B. Ravel, M. Newville, J. Synchrotron Radiat., 12 (2005) 537-541.
    [42] A.J. Studer, M.E. Hagen, T.J. Noakes, Phys. B-Condensed Matter, 385-86 (2006) 1013-1015.
    [43] G. Du, N. Sharma, V.K. Peterson, J.A. Kimpton, D. Jia, Z. Guo, Adv. Funct. Mater., 21 (2011) 3990-3997.
    [44] N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V.K. Peterson, J. Am. Chem. Soc., 134 (2012) 7867-7873.
    [45] N. Sharma, V.K. Peterson, J. Solid State Electrochem., 16 (2012) 1849-1856.
    [46] N. Sharma, V.K. Peterson, M.M. Elcombe, M. Avdeev, A.J. Studer, N. Blagojevic, R. Yusoff, N. Kamarulzaman, J. Power Sources, 195 (2010) 8258-8266.
    [47] N. Sharma, M.V. Reddy, G. Du, S. Adams, B.V.R. Chowdari, Z. Guo, V.K. Peterson, J.Phy.Chem. C, 115 (2011) 21473-21480.
    [48] A. Magerl, H. Zabel, I.S. Anderson, Phys. Rev. Lett., 55 (1985) 222-225.
    [49] R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett., 10 (2010) 4123-4127.
    [50] J. Wuttke, A. Budwig, M. Drochner, H. Kämmerling, F. J. Kayser, H. Kleines, V. Ossovyi, L.C. Pardo, M. Prager, D. Richter, G.J. Schneider, H. Schneider, S. Staringer, Rev. Sci. Instrum., 83 (2012) 075109.
    [51] J. Wong, F.W. Lytle, R.P. Messmer, D.H. Maylotte, Phys. Rev. B, 30 (1984) 5596-5610.
    [52] C.Y. Chiang, H.C. Su, P.J. Wu, H.J. Liu, C.W. Hu, N. Sharma, V.K. Peterson, H.W. Hsieh, Y.F. Lin, W.C. Chou, C.H. Lee, J.F. Lee, B.Y. Shew, J.Phy.Chem. C, 116 (2012) 24424-24429.
    [53] A.M. Balagurov, Physica B: Condensed Matter, 174 (1991) 542-545.
    [54] S.A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter, Dalton Trans., 39 (2010) 5490-5499.
    [55] X. Sun, K. Sun, Y. Wang, X. Bai, C. Chen, B. Cui, Int. J. Electrochem. Sci., 8 (2013) 12816-12836.
    [56] X. Sun, K. Sun, C. Chen, H. Sun, B. Cui, Int. J. Mater. Chem., 2 (2012) 218-224.
    [57] R. Dedryvere, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, Chem. Mater., 20 (2008) 7164-7170.
    [58] D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochimica Acta, 50 (2005) 2955-2958.
    [59] J.Q. Dou, X.Y. Kang, W. Tuerdi, N. Hua, Y. Han, , Acta Phys. Sin., 61 (2012) 087101.
    [60] M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H. Rensmo, H. Siegbahn, N. Ravet, M. Armand, J.O. Thomas, K. Edström, Electrochemical and Solid-State Letters, 6 (2003) A202-A206.
    [61] F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B, 41 (1990) 928-937.
    [62] F. Zhou, K.S. Kang, T. Maxisch, G. Ceder, D. Morgan, Solid State Commun., 132 (2004) 181-186.
    [63] C.W. Hu, T.Y. Chen, K.S. Shih, P.J. Wu, H.C. Su, C.Y. Chiang, A.F. Huang, H.W. Hsieh, C.C. Chang, B.Y. Shew, C.H. Lee, J. Power Sources, 270 (2014) 449-456.
    [64] X.J. Wang, C. Jaye, K.W. Nam, B. Zhang, H.Y. Chen, J. Bai, H. Li, X. Huang, D.A. Fischer, X.Q. Yang, J. Mater. Chem., 21 (2011) 11406-11411.
    [65] H.H. Chang, C.C. Chang, H.C. Wu, M.H. Yang, H.S. Sheu, N.L. Wu, Electrochem. Commun., 10 (2008) 335-339.
    [66] B. Simon, S. Flandrois, K. Guerin, A. Fevrier-Bouvier, I. Teulat, P. Biensan, J. Power Sources, 81 (1999) 312-316.
    [67] K. Persson, Y. Hinuma, Y.S. Meng, A. Van der Ven, G. Ceder, Phys. Rev. B, 82 (2010) 125416.
    [68] K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. Van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett., 1 (2010) 1176-1180.
    [69] J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.
    [70] R. Yazami, A. Martinent, Y. Reynier, Some thermodynamics and kinetics aspects of the graphite-lithium negative electrode for lithium-ion batteries, in: I.V. Barsukov, C.S. Johnson, J.E. Doninger, V.Z. Barsukov (Eds.) New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, 2006, pp. 245-258.
    [71] R. Yazami, Y. Reynier, J. Power Sources, 153 (2006) 312-318.
    [72] C.Y. Ouyang, D.Y. Wang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, Chin. Phy. Lett., 23 (2006) 61.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE