研究生: |
楊凱智 Yang Kai-Chih |
---|---|
論文名稱: |
強健性H-infinity非直視訊號濾波器定位和追蹤控制機器人在無線網路中 Robust H∞ NLOS-Tolerant Localization Filter and NLOS-Tolerant Remote Reference Tracking Control of Mobile Robot in Wireless Sensor Networks |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
黃志良
Hwang, Chih-Lyang 翁慶昌 Wong, Ching-Chang 李征衛 Li, Cheng-Wei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 強健性控制 、非直視訊號 、追蹤控制 |
外文關鍵詞: | Robust control, Reference tracking control, non-line-of -sight |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在非直視距離 (NLOS) 情況下,對使用無線感測網絡 (WSN) 的移動機器人進行準確定位和強健性參考跟踪控制的需求已被廣泛應用於各個行業領域。 為了克服NLOS情況,採用平滑信號模型將NLOS引起的偏差信號嵌入到移動機器人的動態系統中,以避免NLOS對使用WSN的移動機器人定位和遠程控制的影響。 研究中,在WSN量測下,一種強健性的 H∞ 模糊定位濾波器被提出來有效地估計移動機器人姿態(位置和方向)和由 NLOS 引起的偏置信號,在 NLOS、外部干擾和量測噪音情況下。 此外,一種基於強健性H∞模糊 NLOS 容錯定位濾波器的遠程控制設計也被提出,用於移動機器人系統來跟踪給定的軌跡,在 WSN 雜亂嘈雜的室內環境中。在WSN 中,移動機器人的強健性 H∞ NLOS 容錯模糊定位基於濾波器的跟踪控制設計問題可以轉化為對應的線性矩陣不等式 (LMI) 約束優化問題,可以使用 MATLAB 中的 LMI 工具箱輕鬆解決。 最後,一個模擬設計實例被提出來說明設計過程,並與其他方法相比,驗證了所提出的 在WSN 中移動機器人定位估計和參考跟踪控制方法的性能在智能建築中。
The need for accurate localization and robust reference tracking control of mobile robot using wireless sensor networks (WSNs) under the non-line-of-sight (NLOS) situations have been widely needed in diverse areas of industry. In order to overcome NLOS situations, a smoothing signal model is employed to embed bias signals due to NLOS in the dynamic system of the mobile robot to avoid the effect of NLOS on the positioning and remote control of the mobile robot using WSNs. In the study, a robust H∞ fuzzy localization filter is developed to efficiently estimate the mobile robot pose (position and
orientation) and bias signals due to NLOS using the measurement of WSNs under NLOS situation, external disturbance and measurement noise. Further, a robust H∞ fuzzy NLOS-tolerant localization filter-based remote control design is also proposed for mobile robot system to track the desired trajectory for some purpose in the cluttered and noisy indoor environment in WSN. The robust H∞ NLOS-tolerant fuzzy localization filter-based tracking control design problems of mobile robot in WSN can be transformed to a corresponding linear matrix inequalities (LMIs)-constrained optimization problem, which
could be easily solved with the LMI toolbox in MATLAB. Finally, a simulation design example is provided to illustrate the design procedure and confirm the performance of the proposed methods for the localization estimation and reference tracking control of the mobile robot in WSN in comparison with the other method in an intelligent building.
[1] K. Derr and M. Manic, ” Wireless sensor networks-node location for various industry problems,” IEEE Tran. Ind. Informat., vol. 11,
no. 3, pp. 752-762, Jun. 2015
[2] A. C. Paredes, M.malfaz, and M.A.Salichs, ” Signage system for the navigation of autonomous robots in indoor environments,” IEEE
Tran. Ind. Informat., vol. 10, no. 1, pp. 680-688, Feb.2014
[3] Y. Toda and N. kubota,” Self-localization based on multiresolution map for remote control of multiple mobile robots,” IEEE Tran. Ind.
Informat., vol. 9, no. 3, pp. 1772-1781, Aug. 2013
[4] H. Liu, H. Darabi, P. Banerjee, and J. Liu,” Survey of wireless indoor positioning technique and systems,” IEEE Trans. Syst. Man
cybern. ,vol. 37, no. 6, pp. 1067-1080, Nov. 2007
[5] P. Yang and W. Wu,” Efficient particle filter location algorithm in dense passive RFID tag environment, ” IEEE Tran. Ind. Electron.,
vol. 61, no. 10, pp. 5641-5651, Nov. 2014
[6] J. M. Huerta, J. Vidal, A. Giremus, and J. Tourneret, ” Joint particle filter and UKF position tracking in severe non-line-of-sight
situations, IEEE J. Sel. Topics Signal Processing, vol. 3, no. 5, pp. 874-888, Oct. 2009
[7] J. M. Pak, C. K. Ahn, Y. S. Shmaliy and M. T. Lim,” Improving reliability of particle filter-based localization in wireless sensor
networks via hybrid particle/FIR filtering,” IEEE Tran. Ind. Informat, vol. 11, no. 5, pp. 1089-1098, Oct. 2015
[8] J. F. Liao and B. S. Chen, ” Robust mobile localition estimator with NLOS mitigation using interactive multiple model algorithm,”
IEEE Tran. Wireless Commun, vol. 5, pp. 3002-3006, Nov. 2006
[9] W. Y. Chiu and B. S. Chen, ” Mobile location estimation in urban areas using mixed Manhattan/Euclidean norm and convex
optimization,” IEEE Trans.wireless Commun. vol. 8, no. 1, pp. 414-423, Jan. 2009
[10] B. S. Chen, C. Y. Yang, F. K. Liao and J. F. Liao, ” Mobile location estimator in rought wireless environment using extended
kalman-based IMM and data fusion, ” IEEE Trans. Vehicle technology, vol. 58, no. 3, pp. 1157-1169, Mar. 2009
[11] C. K. Ahn, P. Shi, and M. V. Basin, ” Two-dimensional dissipative control and filtering for Roesser model, ” IEEE Trans. Autom.
Contr. , vol. 60, no. 2, pp. 1745-1759, Jul. 2015
[12] S. Thrum, D. Fox, W. Burgard and F. Dellaert, ” Robust Monte Carlo Localization for mobile robots, ” Artif. Intell., vol. 128, pp.
99-141, May. 2000
[13] D. Simon. Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches, Hoboken, NJ, USA. Wileg. 2008
[14] S. Thrun,W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, WA. USA: MTT Press, 2005
[15] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for tracking Applications. Norwood, MA, USA:
Arctech House, 2004
[16] W. R. Gilks and Berniini, ” Following a moving target-monte carlo inference for dynamic Bayesian models, ” J. Roy. Sat. Soc.B
(stat.Methodology), 63, no. 1, pp. 127-146, 2001
[17] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, ” Monte Carlo localization Efficient position estimation for mobile robots, ” in proc.
Nal. Conf. Artif. Intell. (AAAI). pp. 343-349, 1999
[18] A. Doucet, S. Godsill, and C. Andrieu, : On sequential Monte Carlo sampling method for Bayesian filtering, ” Statist. Comput., vol.
10, no. 3, pp. 197-208, Jun. 2000
[19] G. C. Goodwin, H. Haimovich, D. E. Quevedo, J. S. Welsh,” A moving horizon approach to networked control system design, ” IEEE
Trans. Automatic controls, vol. 49, no. 9, pp. 14127-1445, Nov. 2004
[20] X. M. Zhang, Q. L. Han, X. Ge, D. Ding, D. Yue and C. Peng, ” Networked control system: A survey of trends and techniques,”
IEEE/CAA J. of Automatica Sinica, vol. 7, no. 1, pp. 1-17, Jan, 2020
[21] X. Lu, H. Wang, and M. Li, ”Kalman fixed-interval and fixed-lag smoothing for wireless sensor systems with multiplicative noises,”
in Proc. 2012 24th Control and Decision Conference, Chinese, pp. 3023-3026, May 2012
[22] B. S. Chen, M. Y. Lee and X. H. Chen, ” Security-enhanced filter design for stochastic systems under mailcious sttack via smoothed
signal model and muttiobjective estimatiob method, ” IEEE Trans. Signal Processing, vol. 68, no. 8, pp. 4971-4986, Aug. 2020
[23] W. Zhang, B. S. Chen and C. S. Tseng, ” Robust H∞ filtering for nonlinear stochastic systems, ” IEEE Trans. Signal Processing vil.
53, no. 2, pp. 589-598, Feb. 2005
[24] B. S. Chen, B. K. Lee and L. B. Guo, ” Optimal tracking design for stochastic fuzzy systems, ”IEEE Trans. Fuzzy system, vol. 11,
no. 6, pp. 796-813, Dec. 2003
[25] T. Takagi and M. Sugeno, ” Fuzzy identification of systems and its applications to modeling and control, ” IEEE Trans. System, Man
and Cybernetics, vol. 15, no. 1, pp. 116-132, Feb. 1985
[26] K. Tanaka, H. O. Wang, Fuzzy control system design and analysis: Linear matrix inequality approach, John Wiley and Sons. Inc. 2001
[27] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, Philadelphia, PA, USA:
SIAM, 1994
[28] Garcia-Planas M.I., Dominguez-Garcia J.L., Um L.E. ”Sufficient conditions for controllability and observability of serial and parallel
concatenated linear systems” International Journal of Circuits, Systems and Signal Processing 8, pp. 622 - 630. 2014
[29] S. R. Jondhale and R. S. Deshpande, ”Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks
Using Generalized Regression Neural Networks,” in IEEE Sensors Journal, vol. 19, no. 1, pp. 224-233, 1 Jan.1, 2019.
[30] S. R. Jondhale and R. S. Deshpande, ” GRNN and KF Framework based Real-Time Target Tracking Using PSOC BLE and smartphone”,
Vol. 84, pp. 19-28, Ad Hoc Networks, 2019.
[31] S. R. Jondhale and R. S. Deshpande, ” Efficient Localization of Sensor Node using Generalized Regression Neural Networks in Large
Scale Farmland”, Vol 32, Issue- 16, International Journal of Communication System, Willey Online, 2019.
[32] J. Song, Y. Niu, J. Lam and H. Lam, ”Fuzzy Remote Tracking Control for Randomly Varying Local Nonlinear Models Under Fading
and Missing Measurements,” in IEEE Transactions on Fuzzy Systems, vol. 26, no. 3, pp. 1125-1137, June 2018.
[33] Y. Yang, Y. Niu, and Z. Zhang, “Dynamic event-triggered sliding mode control for interval Type-2 fuzzy systems with fading channels,”
ISA Transactions, vol. 110, no. Complete, pp. 53–62, Apr. 2021.
[34] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
29
[35] P. Apkarian, and H. D. Tuan, “Robust control via concave optimization: local and global algorithms”, Proc of CDC, 1998.
[36] J.B. Thevenet, D. Noll and P. Apkarian, “Nonlinear spectral SDP method for BMI-constrained problems: applications to control design”,
Informatics in Control, Automation and Robotics, vol. 1, pp. 61–72, 2006.
[37] Q. Tran Dinh, W. Michiels, S. Gros and M. Diehl, ”An inner convex approximation algorithm for BMI optimization and applications
in control,” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 3576-3581.
[38] F. Gustafsson et al., ”Particle filters for positioning, navigation, and tracking,” in IEEE Transactions on Signal Processing, vol. 50, no.
2, pp. 425-437, Feb. 2002.