研究生: |
林國偉 Kuo-Wei Lin |
---|---|
論文名稱: |
雙流體混合機制之數值模擬及實驗分析 Numerical Simulation and Experimental Analysis of Chaotic Mixing in Two-Fluid Flow |
指導教授: |
楊鏡堂
Jing-Tang Yang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 流體混合 、微機電 、微流體 |
外文關鍵詞: | fluid mixing, MEMS, micro flow |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以數值模擬及實驗量測研究雙流體的混合,建立流體混合的定量化標準,瞭解流體混合的影響因素;繼而模擬雙流體在蜿蜒渠道中的混合,並實際設計、製作並量測流體混合的結果。對於相溶的流體,混合的組成以濃度的標準差表示;對於不相溶的流體,比表面積越大,流體的接觸面積越大,混合得越均勻,以灰階影像擷取、統計相鄰畫素差異得到。兩相流體混合的組成,計算粒子的相對距離,擷取灰階影像、影像修正、反相處理、影像矩陣化、粒子定量化、統計粒子相對距離得到。在微尺度環境下,流體的雷諾數很低,難以擾動方式混合流體;本文改良平面轉折的蜿蜒渠道,使其橫截面積交錯變化,增加局部的壓力梯度,以產生回流。結果顯示流速越快,渠道橫截面積的比率越大,使得Dean number 變大,Dean vortices越強烈,流體的運動軌跡及流體介面也大幅扭曲及拉伸;配合適合的入口分佈,流體可以迅速達到混合。在雷諾數102以下,流體的速度不因為流經重複形狀的渠道而放大擾動;然而流體的運動軌跡,卻會因為角落Dean vortices的存在,扭曲程度不斷增加。在雷諾數0.87,截面積比率兩倍時產生的混合效果較一般蜿蜒渠道增加32%。而在雷諾數13.9時,增加47%。若流體的密度不同,基於動量平衡,密度大的流體趨向低速區域。在雷諾數16,Dean number 12.27時,0.5 %的密度差異即產生明顯的分離現象。綜合而言,本文從定量標準、原理探討、數值模擬,流體晶片設計製作到實驗量測,完成了微尺度雙流體混合的研究。
This work finishes two-fluid mixing via numerical simulation and experimental measuremet. Mixing indexes, mixing mechanism, mixer of a planar serpentine channel with alternating cross sections is designed, simulated, and verified. Mixing indexes for miscible fluids, immiscible fluids, and two-phase fluids are designated as the standard deviation of concentration, interface to volume ratio, and the sum of interval of particles. Fast flow or great ratio of cross sections increases the pressure gradient and the Dean number. In coordinate with a suitable inlet fluid distribution, fluid mixing can be promoted. Below Reynolds number 102, flow velocity does not perturbed by experiencing a repeated channel; but the trajectory does. At Reynolds number 0.87, for aspect ratio 2, the increased mixing degree is 32% as compared to the serpentine channel; for Reynolds number 13.9, it rises up to 47%. For fluids of different densities, to keep momentum balance, the heavy fluid trends to locate at the region of slow flow. At Reynolds number 16 and Dean number 12.27, a difference of 0.5% makes apparent separation. Overall, this work has great contribution on microscale two-fluid mixing in process of mixing indexes analysis, mechanism of fluid mixing, numerical simulation of fluid mixing, fabrication of fluidic mixer, and measurement of fluid mixing.
Amon, C. H., Guzmán, A. M., and Morel, B., 1996, “Lagrangian Chaos, Eulerian Chaos, and Mixing Enhancement in Converging-Diverging Channel Flows,”Physics of Fluids, Vol. 8, pp. 1192-1206.
Aref, H., 1984, “Stirring by Chaotic Advection,” Journal of Fluid Mechanics, Vol. 143, pp. 1-21.
Aref, H., 2002, “The Development of Chaotic Advection,” Physics of Fluids, Vol. 14, pp. 1315-1325.
Atkins, P. W., 1990, Physical Chemistry, 4th edition, Oxford University, Oxford.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley & Sons Inc, New York, pp. 557.
Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., and Burke, D. T., 1998, “An Integrated Nanoliter DNA Analysis Device,” Science, Vol. 282, pp. 484-487.
Buyuktas, D. and Wallender, W. W., 2004, “Dispersion in Spatially Periodic Porous Media,” Heat and Mass Transfer, Vol. 40, pp. 261-270.
Castelain, C., Mokrani, A., Guer, Y. L., and Peerhossaini, H., 2001, “Experimental Study of Chaotic Advection Regime in A Twisted Duct Flow,” European Journal of Mechanics B-Fluids, Vol. 76, pp. 205-232.
CFD-ACE (U) TM User Manual Version 2002, CFD Research Corporation, pp. (12-1)-(12-18).
Chien, W. L., Rising, H., and Ottino, J. M., 1986, “Laminar Mixing and Chaotic Mixing in Several Cavity Flows,” Journal of Fluid Mechanics, Vol. 170, pp. 355-377.
Dean, W. R., 1927, “Note on The Motion of Fluid in A Curved Pipe,” Philosophical Magazine, Vol. 4, pp. 208-223.
Desmukh, A. A., Liepmann, D., and Pisano, A. P., 2000, “Continuous Micromixer with Pulsatile Micropumps,” Solid-State Sensor and Actuator Workshop 2000, Hilton Head Island, SC, USA.
Fountain, G. O., Khakhar, D. V., Memic, I., and Ottino, J. M., 2000, “Chaotic Mixing in A Bounded Three-dimensional Flow,” Journal of Fluid Mechanics, Vol. 417, pp. 265-301.
Gad-el-Kak, M., 1999, “The Fluid Mechanics of Microdevices—the Freeman scholar lecture,” Journal of Fluids Engineering, Vol. 121, pp. 5-33.
Geankoplis, C. J., 1972, Mass Transport Phenomena, Mei Ya, pp. 261-266.
Gobby, D., Angeli, P., and Gavriilidis, A., 2001, “Mixing Characteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132.
Harrison, D. J., Fluri, K., Chiem, N., Tang, T., and Fan, Z., 1996, “Micromachining Chemical and Biochemical Analysis and Reaction Systems on Glass Substrates,” Sensors and Actuators B, Vol. 33, pp. 105-109.
Hwang, N. H. C., Turitto, V. T., and Yen, M. R. T., 1992, Advances in Cardiovascular Engineering, Plenum, pp. 139-141.
Incropera, F. P. and Witt, D. P., 1990, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, pp. 902-903.
Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., and Whitesides, G. H., 2000, “Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-phase Laminar Flows in Microchannels,” Applied Physics Letter, Vol. 76, pp. 2376-2378.
Jones, S. W., Thomas, O. M., and Aref, H., 1989, “Chaotic Advection by Laminar Flow in A Twisted Pipe,” Journal of Fluid Mechanics,” Vol. 209, pp. 335-357.
Kamholz, A. E. and Yager, P., 2001, “Theoretical Analysis of Molecular Diffusion in Pressure-driven Laminar Flow in Microfluidic Channels,” Biophysical Journal, Vol. 80, pp. 155-160.
Kenis, P. A. J., Ismagilov, R. F., and Whitesides, G. M., 1999, “Microfabrication inside Capillaries Using Multiphase Laminar Flow Patterning,” Science, Vol. 285, pp. 83-85.
Khakhar, D. V., Rising, H., and J. M. Ottino, 1986, “Analysis of Chaotic Mixing in Two Model Systems,” Journal of Fluid Mechanics, Vol. 172, pp. 419-451.
Kim, D. S., Lee, K. C., Kwon, T. H., and Lee, S. S., 2002, “Micro-channel Filling Flow Considering Surface Tension Effect,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 236-246.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., 2005, “A Serpentine Laminating Micromixer Combining Splitting/recombination and Advection, Lab on a Chip, Vol. 5, pp. 739-747.
Kockmann, N., Föoll, C., and Woias, P., “Flow Regimes and Mass Transfer Characteristics in Static Micro Mixers,” Proceeding of the Photonics West, Micromachining and Microfabrication, San Jose, USA, 2003, pp. 4928-4938.
Ling, F. H., 1993, “Chaotic Mixing in A Spatially Periodic Continuous Mixer,” Physics of Fluids, Vol. 5, pp. 2147–2160.
Liu, Y. Z., Kim, B. J., and Sung, H. J., 2004, “Two-fluid Mixing in A Microchannel,” International Journal of Heat and Fluid Flow, Vol. 25, pp. 986-995.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, “Passive Mixing in A Three-dimensional Serpentine Microchannel,” Journal of Microelectromechanical Systems, Vol. 9, pp. 190-197.
Löwe, H. and Ehrfeld, W., 1999, “State-of-the-art in Microreaction Technology: Concepts, Manufacturing and Applications, Electrochimica Acta, Vol. 44, pp. 3679-3689.
Lu, L. H., Ryu, K. S., and Liu, C., 2002, “A Magnetic Microstirrer and Array for Microfluidic Mixing,” Journal of Microelectromechanical Systems, Vol. 11, pp. 462-469.
Meinhart, C. D., Wereley, S. T., and Santiago, J. G., 1999, “PIV Measurements of A Microchannel Flow,” Experiments in Fluids, Vol. 27, pp. 414–419.
Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., 1993, “Micro Mixer with Fast Diffusion,” Proceeding of Micro Electro Mechanical Systems, MEMS ’93, Fort Lauderdale, Florida, USA, pp. 248-253.
Munson, B. R., Yang, D. F., and Okiishi, T. H., 1990, Fundamentals of Fluid Mechanics, John Wiley & Sons Inc, New York, pp. 581.
Nguyen, N. T. and Wu, Z., 2005, “Micromixers—A Review,” Journal of Micromechanics and Microengineering, Vol. 15, pp. R1-R16.
Niu, Z. Q., Chen, W. Y., Shao, S. Y., Jia, X. Y., and Zhang, W. P., 2006, “DNA Amplification on A PDMS-glass Hybrid Microchip,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 425-433.
Ottino, J. M., Leong, C. W., and Swanson, P. D., 1988, “Morphological Structures Produced by Mixing in Chaotic Flows,” Nature, Vol. 333, pp. 419–425.
Ottino, J. M., 1989, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University, pp. 1-3.
Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., and Kusch, H. A., 1992, “Chaos, Symmetry, and Self-similarity: Exploiting Order and Disorder in Mixing Processes,” Science, Vol. 257, pp. 754–760.
Ottino, J. M., Jana, S. C., and Chakravarthy, V. S., 1994, “From Reynolds Stretching and Folding to Mixing Studies Using Horseshoe Maps,” Physics of Fluids, Vol. 6, pp. 685-699.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 10.
Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, “A Particle Image Velocimetry System for Microfluidics,” Experiments in Fluids, Vol. 25, pp. 316–319.
Schwesinger, N., Frank, T., and Wurmus, H., 1996, “A Modular Microfluid System with An Integrated Micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 99-102.
Song, H., Tice, J. D., and Ismagilov, R. F., 2003, “A Microfluidic System for Controlling Reaction Networks in Time,” Angewandte Chemie International Edition, Vol. 42, pp. 768-772.
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezić, I., Stone, H. A., and Whitesides, G. M., 2002, “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651.
Tabor D., 1991, Gases, Liquids and Solids and Other States of Matter, 3rd edition, Cambridge, pp. 117-119.
Veenstra, T. T., Lammerink, T. S. J., Elwenspoek, M. C., and Berg, A. V. D., 1999, “Characterization Method for A New Diffusion Mixer Applicable in Micro Flow Injection Analysis Systems,” Journal of Micromechanics and Microengineering, Vol. 9, pp. 199-202.
Voldman, J., Gray, M. L., and Schmidt, M. A., 2000, “An Integrated Liquid Mixer/valve,” Journal of Microelectromechanical Systems, Vol. 9, pp. 295-302.
White, F. M., 1991, Viscous Fluid Flow, 2nd edition, McGraw-Hill, Singapore, pp. 160.
Xia, H. M., Shu, C., Wan, S. Y. M., and Chew, Y. T., 2006, “Influence of The Reynolds Number on Chaotic Mixing in A Spatially Periodic Micromixer and Its Characterization Using Dynamical System Techniques,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 53-61.
Yang, J. T., Huang, K. J., and Lin, Y. C., 2005, “Geometric Effects on Fluid Mixing in Passive Grooved Micromixers,” Lab on a Chip, Vol. 5, pp. 1140-1147.
Yang, Z., Matsumoto, S., Maeda, R., Goto, H., and Matsumoto, M., 2001, “Ultrasonic Micromixer for Microfluidic Systems,” Sensors and Actuators A, Vol. 93, pp. 266-272.
Zauderer, E., 1989, Partial Differential Equations of Applied Mathematics, John Wiley & Sons, pp. 2-8.