簡易檢索 / 詳目顯示

研究生: 林佑澄
論文名稱: 隨機效應輪廓資料之第一階段監控
指導教授: 黃榮臣
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 隨機效應輪廓監控
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多的實際情況中,製程或產品的品質特性是由一反應變數及一或多個解釋變數之間的關係所描述,而不再是一般的隨機變數,這種反應變數和解釋變數之間的關係稱為輪廓函數。由於隨機效應模型比固定效應模型的應用更為廣泛,在許多的實例中,反應變數與解釋變數之間的關係都可用隨機效應模型來描述。因此在本文中我們將以隨機效應模型做為輪廓函數,考慮在第一階段的監控裡,使用兩種不同的係數參數估計量及三種監控製程的管制圖,並透過統計模擬,來比較這兩種不同的估計量所建構的三種監控管制圖的優劣。


    第一章 序論 1.1 前言…………………………………………………………1 1.2 輪廓監控……………………………………………………2 1.3 研究動機與目的……………………………………………3 第二章 隨機效應模型 2.1 模型假設……………………………………………………4 2.2 參數估計……………………………………………………5 2.3 管制圖的建構………………………………………………8 第三章 監控的程序 3.1 平衡的資料…………………………………………………10 3.2 Betaj與Betamax管制圖的比較……………………………10 3.3 參數的偏移…………………………………………………12 3.4 失控警訊機率………………………………………………13 3.5 模擬設定……………………………………………………13 3.6 管制圖比較…………………………………………………14 3.6.1 階梯式偏移…………………………………………15 3.6.2 離群值………………………………………………17 第四章 結論與未來研究…………………………………………20 參考文獻…………………………………………………………22 附圖………………………………………………………………24 附表………………………………………………………………48

    [1] Kang, L. and Albin, S. L. (2000). “On-Line Monitoring When the Process Yields a Linear Profile,” Journal of Quality Technology 32, pp. 418-426.

    [2] Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of American Statistical Association, 79, 871-880.

    [3] Rousseeuw, P. J. and Van Driessen, K. (1990). A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics, 41, pp. 212-223.

    [4] Rousseeuw, P. J. and van Zomerern, B. C. (1990). Unmasking Multivariate Outlier and Leverage Points. Journal of the American Statistical Assciation 85, 633-639.

    [5] Schabenberger, O. and Pierce, F. J (2002). Contemporary Statistical Models for the Plant and Soil Sciences. CRC Press, Boca Ration, Florida.

    [6] Scholz, F. W. and Tosch, T. J. (1996). Small Sample Uni- and Multivariate Control Chart for Means. Presented at 154th Annual Meeting of the American Statistical Society, Toronto. Canada, American, Statistical Association.

    [7] Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. New York: John Wiley.

    [8] Sullivan, J. H. and Woodall, W. H. (1996). A Comparison of Multivariate Control Charts for Individual Observations. Journal of Quality Technology 28, pp. 398-408.

    [9] Tracy, N. D., Young, J. C. and Mason, R. L. (1992). Multivariate Quality Control Charts for Individual Observations, Journal of Quality Technology, 24, pp. 88-95.

    [10] Vargas, J. A. (2003). Robust Estimation in Multivariate Control Charts for Individual Observations. Journal of Quality Technology 35, pp. 367-376.

    [11] Vonesh, E. F. (1992). Nonlinear Models for the Analysis of Longitudinal Data. Statistics in Medicine, 11, 1929-1954.
    [12] Vonesh, E. F. and Carter, R. L. (1992). Mixed-Effects Nonlinear Regression for Unbalanced Repeated Measures. Department of Statistics, Division of Biostatistics, University of Florida, Gainesville, Florida 32610, U.S.A.

    [13] Vonesh, E. F. and Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York, NY.

    [14] Wierda, S. J. (1994a). Multivariate Statistical Process Control: Recent Results and Directions for Future Researches, Stastica Neerlandica, 48, pp. 147-168.

    [15] Willis, Jensen A., Birch Jeffrey B. and Woodall, William H. (2006). Profile Monitoring via Linear Mixed Models. Technical report, Virginia Polytechnic Institute and State University.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE