簡易檢索 / 詳目顯示

研究生: 羅運昌
Lo, Yun-Chang
論文名稱: 分散式無線感測網路中利用E-M演算法之多訊號源估計技術
Estimation of Multiple Sources Using E-M Algorithm in Distributed Wireless Sensor Networks
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 感測網路多訊源結合估測量化分散式感測網路最大期望演算法最大似然估計
外文關鍵詞: senror network, EM-algorithm, multiple sources estimation, distributed sensor network, qantization, ML estimator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在這篇論文中,我們討論多訊源無線感測網路的分散式結合估計問題。在多訊源無線感測網路中,包含有一個負責估計的資料收集中心,與多個負責觀測和量化的感測器,每個感測器將感測到不定個數訊源所組成的結合訊號;我們設計在資料收集中心的估計法,並調整感測器端的量化函數。假設每個感測器只能傳送一個符號給資料收集中心,且此傳送過程為理想通道,而討論此情況下位於資料收集中心的多訊源結合估測函數。我們先推導出在集中式無線感測網路中所適用的最大適然法則估計子,並使用最大期望演算法作出可行的結合估計演算;而後考慮在經過分散式感測節點之量化影響下,如何引用前述結果。由結果發現,當系統的感測訊噪比越大時,強制引用集中式感測的結合估測結果並不可行,且運算過於困難,依此對原始的最大期望演算法提出一種修正運算以對抗量化雜訊,在高訊噪比的情況下減少因量化而對估測產生的不良影響,使我們提出的方法較傳統的方式可以得到較低的均方差。


    In this work, a joint distributed estimation problem for multiple source wireless sensor network is considered. A wireless sensor network involves numbers of sensors and a fusion center. We design the estimation algorithm in the fusion center, and minimize the quantization effect to improve the performance of estimator. Let each sensor observe some combined signal from different source, quantize these row data into a finite symbol set, and transmit a finite number of bits to the fusion center. We consider the observation noise distribution is Gaussian, and ideal backward communication channels. First, we design a feasible joint maximum-likelihood (ML) estimator for centralized sensor network to avoid searching estimation result in infinite space. Second, we apply this estimator to our decentralized environment. In conclusion, we modify our algorithm to reduce the bad effect of quantization. The proposed method has better performance, or we say less mean square error (MSE), than the conventional one.

    Abstract .............................................. 1 Contents .............................................. 2 Chapter 1 Introduction ................................ 3 1.1 Introduction to Distributed Estimation in WSN .. 3 1.2 Related Works .................................. 4 Chapter 2 System Model ................................ 7 2.1 Sensing Model .................................. 7 2.2 Fusion Rule .................................... 9 Chapter 3 Joint Maximum Likelihood Estimation for Multiple Source Centralized Sensor Network .. 10 3.1 The Likelihood Function Evaluation ............. 10 3.2 Variational Inference Approach in Centralized Case ........................................... 11 3.3 Sum-Product (SP) Algorithm in Centralized Case . 13 3.4 Expectation-Maximization (EM) Algorithm in Centralized Case ............................... 17 3.5 Numerical Result ............................... 23 Chapter 4 Joint Maximum Likelihood Estimation for Multiple Source Decentralized Sensor Network ..................................... 25 4.1 The Likelihood Function Evaluation ............. 25 4.2 Expectation-Maximization (EM) Algorithm in Decentralized Case ............................. 26 4.3 Space-Alternating Generalized Expectation- Maximization (SAGE) Algorithm in Decentralized Case ........................................... 31 4.4 Optimal Observation SNR for Uniform Quantization 33 4.5 Observation Recovering ......................... 39 4.6 Numerical Result ............................... 41 Conclusions ........................................... 47 Reference ............................................. 48

    [1] I. F. Akyidiz, W. Su., Y. Sankarasubramaniam, and E.
    Cayirci, “A Survey on Sensor Network,” IEEE Comm.
    Mag., vol 40, no. 8, pp. 102 – 114, Aug. 2002.
    [2] Jos□ M. F. Moura, Jin Lu, and Marius Kleiner,
    “Intelligent Sensor Fusion: A Graphical Model
    Approach,” IEEE Inter. Conf. on Acoustic, Speech,
    and Signal Process., vol 6, VI-733-6, Apr 2003.
    [3] Jin-Jun Xiao, Shuguang Cui, Zhi-Quan Luo, and Andrea
    J. Goldsmith, “Power Scheduling of Universal
    Decentralized Estimation in Sensor Network,” IEEE
    Trans. Signal Process., vol. 54, no. 2, May 2006.
    [4] Z. Q. Luo and J. –J. Xiao, “Decentralized Estimation
    in an Inhomogeneous Sensing Environment,” IEEE Trans.
    Inf. Theory, vol. 51, no. 10, pp. 3564-3575, Oct.
    2005.
    [5] Tuncer C. Aysal and Kenneth E. Barner, “Blind
    Decentralized Estimation for Bandwidth Constrained
    Wireless Sensor Networks,” IEEE Trans. Wireless Comm.,
    val. 7, no. 5, pp. 1466-1471, 2008
    [6] Leung H., Chandana S., and Shuang Wei, “Distributed
    Sensing Based on Intelligent Sensor Network,” IEEE
    Circuits and Systems Magazine, 8(2), pp. 38-52, 2008.
    [7] S. Chandana, H. Leung, and J. Levy, “Disaster
    Management Model Based on Modified Fuzzy Cognitive
    Maps,” Proc. IEEE Intl. Conf. Systems, Man and
    Cybernetics, pp. 392-397, 2007.
    [8] Frank R. Kschischang, Brendan J. Frey, and Hans-
    Andrea Loeliger, “Factor Graphs and the Sum-Product
    Algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
    pp. 498 – 519, Feb. 2001
    [9] H.-A. Loeliger, “An Introduction to Factor Graphs,”
    IEEE Signal Proc. Mag., vol. 21, pp. 28 – 41, Jan.
    2004.
    [10] Dempster A.P., Lard N.M., and Rubin D.B., “Maximum
    Likelihood from Incomplete Data via the EM
    Algorithm,” Journal of the Royal Statistical
    Society, Series B, 39, 1-38
    [11] Jeffrey A. Fessler and Alfred O. Hero, “Space-
    Alternating Generalized Expectation-Maximization
    Algorithm,” IEEE Trans. Signal Process., vol. 42,
    no. 10, pp. 2664 - 2677, Oct 1994.
    [12] R. G. Gallager. “Low-Density Parity Check Codes,”
    No. 21 in Res. Mongraph Series. Cambrige, MA: MIT
    Press, 1963.
    [13] T. Richardson and R. Urbanke, “The Capacity of Low
    Density Parity Check Codes Under Message-Passing
    Decoding,” IEEE Trans Inf. Theory, vol. 47, pp.
    599-618, Feb 2001.
    [14] Mestdagh D., Spruyt P., and Biran B., “Effect of
    amplitude clipping in DMT-ADSL transceivers,”
    Electronics Letters, vol. 29, no. 15, 22nd July
    1993.
    [15] Henning Ehm, Sebastian Winter, and Robert Weigel
    “Analytic Quantization Modeling of OFDM Signals
    Using Normal Gaussian Distribution”, 2006 APMC
    (Asia-Pacific Microwave Conference), pp. 847-850,
    Dec. 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE