簡易檢索 / 詳目顯示

研究生: 江怡君
Chiang, Yi-Chun
論文名稱: 二氧化鈦氣凝膠應用於染料敏化太陽能電池
Applications of TiO2 Aerogels in Dye-sensitized Solar Cells
指導教授: 呂世源
Lu, Shih-Yuan
口試委員: 胡啟章
裘性天
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 染料敏化太陽能電池二氧化鈦氣凝膠複合結構
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增進染料敏化太陽能電池之光電轉換效率,選擇具有大表面積之介孔材料做為陽極,而二氧化鈦氣凝膠因為具有相當大的比表面積,且為3-D網狀結構,為最具發展潛力的中孔材料之一,因此以二氧化鈦氣凝膠作為陽極,組裝成染料敏化太陽能電池。以商用P25做基準,TiCl4處理後光電轉換效率最高為7.22%,而二氧化鈦氣凝膠可達8.36%,最主要的貢獻為染料吸附量增加,提升了電流密度,進一步增加光電轉換效率。由於二氧化鈦氣凝膠必頇經過鍛燒才會具有anatse晶相,但鍛燒會使得表面積驟減,因此嘗詴以類似水熱法的條件在高溫高壓合成,企圖製備出不需鍛燒即具晶相之氣凝膠。因此將超臨界乾燥溫度提高到80℃與120℃,TiCl4處理後光電轉換效率分別為8.21%、8.20%。不同溫度下的二氧化鈦氣凝膠表面積略有差異,超臨界乾燥溫度為80℃的表面積、孔徑體積、孔徑尺寸最大。三者表面積、孔徑尺寸、孔徑體積、晶相略有不同,但整體而言,光電轉換效率、RTiO2、electron life time、擴散係數、IPCE值差異不大。然而限制二氧化鈦氣凝膠陽極效率的突破原因之一為電子傳輸速率。由於氣凝膠晶粒小,晶界密度大,因此降低了電子傳輸速率。為此,添加電子傳輸快速的TiO2-B奈米線以改善電子傳輸並增加光散射效應。添加了5%的奈米線後,不作TiCl4處理,效率最高可達7.47%。然而,在5微米的厚度下,效率增加的幅度更大。添加5%奈米線後光電轉換效率由4.62%增加至5.75%,增加了24.5%。添加10%奈米線後,由效率4.62%增加至5.61%,提升了21.4%。儘管添加了表面積較小的奈米線,染料吸附量因而降低,但是電子傳輸速率卻增加,又具有光散射效應,使得在5微米厚度下添加5%奈米線時光電轉換效率達到最大值。


    總目錄 摘要............................................................................................................................... I Abstract ......................................................................................................................... II 致謝.............................................................................................................................. IV 總目錄........................................................................................................................... V 表目錄....................................................................................................................... VIII 圖目錄........................................................................................................................... X 第1章 緒論............................................................................................................ 1 1-1前言 ................................................................................................................. 1 1-2太陽能電池的種類 ......................................................................................... 2 1-3研究背景與目的 ............................................................................................. 4 第2章 文獻回顧與理論說明................................................................................ 6 2-1 染料敏化太陽能電池的原理 ........................................................................ 6 2-2 一維奈米結構二氧化鈦陽極的製備與應用於DSSCs ................................ 8 2-2.1 陽極二氧化鈦奈米棒/奈米線 ............................................................ 8 2-2.2 陽極二氧化鈦奈米管 ....................................................................... 12 2-3 中孔奈米結構二氧化鈦陽極的製備與DSSCs的應用 ............................. 15 2-3.1 模板法(template method) .................................................................. 15 2-3.2 沉澱法(precipitation method) ........................................................... 18 2-3.3 溶膠凝膠法(sol-gel method) ............................................................. 20 2-4陽極二氧化鈦氣凝膠的製備、改質與DSSCs的應用 .............................. 22 2-4.1 氣凝膠介紹 ....................................................................................... 22 2-4.2 金屬氧化物氣凝膠 ........................................................................... 22 2-4.3 氣凝膠的製備方式 ........................................................................... 24 VI 2-4.4 氣凝膠乾燥方式-超臨界乾燥 .......................................................... 25 2-4.5 二氧化鈦氣凝膠應用於DSSCs ....................................................... 27 2-5混掺零維及一維奈米結構之結晶性電極 ................................................... 29 2-6太陽輻射 ....................................................................................................... 31 第3章 實驗方法.................................................................................................. 33 3-1藥品 ............................................................................................................... 33 3-2實驗設備 ....................................................................................................... 35 3-3儀器分析 ....................................................................................................... 37 3-4實驗步驟 ....................................................................................................... 42 3-4.1二氧化鈦氣凝膠之合成 .................................................................... 42 3-4.2二氧化鈦奈米線之合成 .................................................................... 43 3-4.3導電玻璃之清洗 ................................................................................ 43 3-4.4 二氧化鈦漿料的配製、塗佈與TiCl4處理 ..................................... 44 3-4.5染料敏化太陽能電池組裝 ................................................................ 44 3-5太陽能電池特性量測 ................................................................................... 45 3-5.1 太陽光電轉換效率量測分析 ........................................................... 45 3-5.2 電化學交流阻抗分析 ....................................................................... 46 3-5.3 染料脫附分析 ................................................................................... 48 第4章 結果與討論.............................................................................................. 49 4-1商用P25與不同超臨界乾燥溫度之二氧化鈦氣凝膠比較 ....................... 49 4-1.1 XRD分析 ................................................................................................... 49 4-1.2 微結構分析 ....................................................................................... 51 4-1.3 SEM分析 ........................................................................................... 53 4-1.4 TEM分析 ........................................................................................... 54 4-1.5 光電轉換效率分析 ........................................................................... 56 VII 4-1.6 電化學交流阻抗分析 ....................................................................... 60 4-1.7 染料脫附分析 ................................................................................... 63 4-1.8 IMVS與IMPS分析 .......................................................................... 65 4-1.9 IPCE分析........................................................................................... 68 4-2 二氧化鈦氣凝膠與奈米棒混摻之研究 ...................................................... 69 4-2.1 XRD分析 ........................................................................................... 69 4-2.2 微結構分析 ....................................................................................... 70 4-2.3 SEM分析 ........................................................................................... 70 4-2.4 TEM分析 ........................................................................................... 73 4-2.5光電轉換效率分析 ............................................................................ 73 4-2.6電化學交流阻抗分析 ........................................................................ 77 4-2.7染料脫附分析 .................................................................................... 79 4-2.8 IMVS與IMPS分析 .......................................................................... 80 4-2.9 IPCE分析........................................................................................... 83 第5章 結論.......................................................................................................... 84 第6章 參考文獻.................................................................................................. 87

    Adachi, M., Sakamoto, M., Jiu, J.T., Ogata, Y. and Isoda, S. , "Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy ," J. Phys. Chem. B, 110, 13872 (2006)
    Adachi, M., Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto and F. M. Wang, "Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism, " J. Am. Chem. Soc., 126, 14943 (2004)
    Armstrong, A.R., Armstrong, G., Canales, J. and Bruce, P.G., "TiO2-B Nanowires," Angew. Chem. Int. Ed., 43, 2286 (2004)
    Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R. and Bruce P.G., "Lithium-ion intercalation into TiO2-B nanowires," Adv. Mater., 17, 862 (2005)
    Barbe, C. J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann,V. Shklover and Gratzel, M., "Nanocrystalline titanium oxide electrodes for photovoltaic applications," J. Am. Ceram. Soc., 80, 3157 (1997)
    Cahen, D., G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells, "J. Phys. Chem. B, 104, 2053 (2000)
    Castro, A. L., M. R. Nunes, A. P. Carvalho, F. M. Costa and M. H. Florencio, "Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity," Solid State Sci., 10, 602 (2008)
    Charoensirithavorn, P., Y. Ogomi, T. Sagawa, S. Hayase and S. Yoshikawa, "Effect of Heat-Treatment on Electron Transport Process in TiO2 Nanotube Arrays Prepared Through Liquid Phase Deposition for Dye-Sensitized Solar Cells, "J. Electrochem. Soc., 156, H803 (2009)
    Chen, C. C., H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung and E. W. G. Diau, "Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells, "J. Phys. Chem. C, 112, 19151 (2008)
    88
    Dagan, G. and M. Tomkiewicz, "TiO2 Aerogels for Photocatalytic Decontamination of Aquatic Environments," J. Phys. Chem.Us., 97, 12651 (1993)
    Diamant, Y., S. G. Chen, O. Melamed and A. Zaban, "Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core, "J. Phys. Chem. B, 107, 1977 (2003)
    Feng, X. J., K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, "Nano Lett., 8, 3781 (2008)
    Gajjela, S. R., K. Ananthanarayanan, C. Yap, M. Gratzel and P. Balaya, "Synthesis of mesoporous titanium dioxide by soft template based approach: characterization and application in dye-sensitized solar cells, "Energ. Environ. Sci., 3, 838 (2010)
    Gong, D., C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen and E. C. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation, " J. Mater. Res., 16, 3331 (2001)
    Green, M. A., K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 32), "Prog. Photovoltaics, 16, 435 (2008)
    Hagfeldt, A. and M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems, "Chem. Rev., 95, 49 (1995)
    Han, L. Y., N. Koide, Y. Chiba and T. Mitate, "Modeling of an equivalent circuit for dye-sensitized solar cells, "Appl. Phys. Lett., 84, 2433 (2004)
    Husing, N. and U. Schubert, "Aerogels airy materials: Chemistry, structure, and properties," Angewandte Chemie-International Edition, 37, 23 (1998)
    Huang, C.Y., Hsu, Yi.C., Chen, J.G., Suryanarayanan, V., Lee, K. M. and Ho, K.C., "The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell," Solar Energy Mater. & Solar Cells, 90, 2391, (2006)
    Ito, S., T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M.
    89
    Gratzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, 516, 4613 (2008)
    Kruger J., "Interface engineering in solid-state dye-sensitized solar cells, " Lausanne, EPFL,PhD thesis (2003)
    Kuang, D., J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin and M. Gratzel, "Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, "Acs Nano, 2, 1113 (2008)
    Liu, B. and E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells," J. Am. Chem. Soc., 131, 3985 (2009)
    Liu, B., J. E. Boercker and E. S. Aydil, "Oriented single crystalline titanium dioxide nanowires, "Nanotechnology, 19, 505604 (2008)
    Liu, W.Q., Hu, L.H., Dai, S.Y., Guo, L., Jiang, N.Q .and Kou, D., "The effect of the series resistance in dye-sensitized solar cells explored by electron transport and back reaction using electrical and optical modulation techniques," Electrochem. Acta, 55, 2338 (2010)
    Matthews, D., P. Infelta and M. Gratzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes," Sol. Energ. Mat. Sol. C, 44, 119 (1996)
    Mor, G. K., K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, " Nano Lett., 6, 215 (2006)
    Nian, J. N. and H. S. Teng, "Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, " J. Phys. Chem. B, 110, 4193 (2006)
    Oregan, B. and M. Gratzel, "A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films, "Nature, 353, 737 (1991)
    Pan, K., Dong, Y.Z., Tian, C.G., Zhou, W., Tian, G.H., Zhao, B.F., Fu, H.G., "TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for
    90
    dye-sensitized solar cells," Electrchimica Acta, 54,7350 (2009)
    Park, J. H., T. W. Lee and M. G. Kang, "Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells," Chem. Commun., 2867 (2008)
    Pietron, J. J., A. M. Stux, R. S. Compton and D. R. Rolison, "Dye-sensitized titania aerogels as photovoltaic electrodes for electrochemical solar cells, "Sol. Energ. Mat. Sol. C, 91, 1066 (2007)
    Smestad, G.P.and Gratzel, M., "Demonstrating electron transfer and nanotechnology: A natural dye-sensitised nanocrystalline energy converter," J. Chem. Edu., 75, 752 (1998)
    Sung, W. J., S. H. Hyun, D. H. Kim, D. S. Kim and J. Ryu, "Fabrication of mesoporous titania aerogel film via supercritical drying," J. Mater. Sci., 44, 3997 (2009)
    Tan, B. and Wu, Y., "Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle Nanowire Composites," J. Phys. Chem. B, 110, 15932 (2006)
    Van de Lagemaat, J.and Frank, A. J., "Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies," J. Phys. Chem. B, 105, 11194 (2001)
    Wang, K.P. and Teng, H.S., "Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination," Phys. Chem. Chem. Phys., 11, 9489 (2009)
    Wang, Z.S., Kawauchi, H., Kashima, T. and Arakawa, H.,"Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination. Chem. Reviews, 248, 1381 (2004)
    Xiaobo, Chen and Samuel, S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev., 107, 2891 (2007)
    Yang, P. D., D. Y. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, "Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline
    91
    frameworks, " Nature, 396, 152 (1998)
    Yang, W. G., F. R. Wan, Q. W. Chen, J. J. Li and D. S. Xu, "Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells, " J. Mater. Chem., 20, 2870 (2010)
    Ohsaki, Y., Masaki, N., Kitamura, T., Wada, Y., Okamoto, T., Sekino, T., Niihara, K., and Yanagida, S., "Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization ," Phys. Chem. Chem. Phys., 7, 4157 (2005)
    Zhang, X.W., Pan, J.H., Du, A.J., Fu, W.J., Sun, D.D. and Leckie, J.O.,"Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment ," Water Research, 43, 1179 (2009)
    Zukalova, M., A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, " Nano Lett., 5, 1789 (2005)
    Zwilling, V., M. Aucouturier and E. Darque-Ceretti, "Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach, "Electrochim. Acta., 45, 921 (1999)
    王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5 (2002)
    徐米君, “製備較高比表面積之矽酸鋰於二氧化碳捕捉之應用”, 國立清學大學化學工程研究所碩士論文 (2009)
    彭懷夫,“中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用”, 國立東華大學化學系碩士班論文 (2004)
    蔡宗佑, “二氧化鈦光電極結構對染料敏化太陽能電池效率之影響”,國立清華大學化學工程學系碩士班論文 (2009)
    羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”, 國立成功大學化學研究所碩士論文 (2003)
    魏得育和呂世源, “最輕的固體 氣凝膠”, 科學發展, 402期, 60 (2006)
    92
    盧偉珠, “高效的金屬氧化物氣凝膠觸媒”, 化工資訊, 四十八期, 58 (2001)
    http://www.nrel.gov/ncpv/
    http://en.wikipedia.org/wiki/Photovoltaic_system

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE