研究生: |
林佳輝 Chia-Hui Lin |
---|---|
論文名稱: |
稀磁性半導體接面中的RKKY與螺旋交換 RKKY and Spiral Exchange in Diluted Magnetic Semiconductor Junction |
指導教授: |
洪在明
Tzay-Ming Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 鐵磁性 、半導體 、自旋電子學 |
外文關鍵詞: | ferromagnetism, semiconductor, spintronics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中,我主要是研究在鐵磁/稀磁性半導體/鐵磁的三層接面結構內的磁性反應,然後利用線性反應理論來計算此結購中磁化率張量,因為稀磁性半導體內的磁化量會對內部的載子施加一個內在磁場,使得磁化率張量產生非零的非對角線元素,其不為零的原因可理解為載子自旋會在均勻磁場下做precession,而稀磁性半導體內載子所形成的費米氣體本身在磁化率張量的對角線上就不為零,這就是過去已被知道的RKKY交換,所以我會將非對角線上的元素稱為螺旋交換,而RKKY交換和螺旋交換分別來自於各自不同的物理機制,且在我們的系統內能同時共存。因為有磁性反應的緣故,兩層鐵磁層的磁矩之間會產生一個角度,稱之為螺旋角,其由上述兩種交換間的相對強度來決定,我的論文則會著重在討論螺旋角如何隨著稀磁性半導體內的磁化量、載子自旋生命期和稀磁性半導體層的寬度而改變,然後我們提出當稀磁性半導體內的載子只被部份自旋極化且自旋鬆弛率夠大下,較可能從實驗上觀察到這樣的螺旋交換。
In this thesis, I study the magnetic response of a ferromagnet/DMS/ferromagnet junction. Linear response theory is used to calculate the magnetic susceptibility tensor. Because there is an internal magnetic ‾eld, namely magnetization, inside the DMS layer, it causes the tensor to have non-diagonal matrix elements. I attribute the non-diagonal elements to carrier spin precession under a uniform magnetic field. However, the Fermi gas owns an intrinsic magnetic response, RKKY exchange, so we call the non-diagonal elements spiral exchange. These two exchange mechanisms originate from each one's physical reason but interplay with each other in our system. The angle be-
tween the two ferromagnetic layer moments, called the spiral angle, depends on the relative magnitude of the two exchange. This thesis emphasizes on studying how the sprial angle changes with magnetization, carrier spin lifetime, and width of the DMS layer. I will suggest that the spiral exchange can be possibly observed experimentally in the regime where carriers are partially polarized and have enough large spin relaxation rate.
[1] G.A. Prinz. Device physics - magnetoelectronics. Science, 282:1660, 1998.
[2] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 294:1488, 2001.
[3] D. Grundler. Spintronics. Physics World, 15:39, 2002.
[4] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61:2472, 1988.
[5] M. Julliere. Tunneling between ferromagnetic films. Phys. Lett. A, 54:225, 1975.
[6] J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey. Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel junctions. Phys. Rev. Lett., 74:3273, 1995.
[7] S. Datta and B. Das. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 56:665, 1990.
[8] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402:790, 1999.
[9] M. Tanaka and Y. Higo. Large tunneling magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Phys. Rev. Lett., 8702:026602, 2001.
[10] H. Munekata, H. Ohno, S. Vonmolnar, A. Segmuller, L.L. Chang, and L. Esaki. Diluted magnetic III-V semiconductors. Phys. Rev. Lett., 63:1849, 1989.
[11] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye. (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett., 69:363, 1996.
[12] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B, 57:R2037, 1998.
[13] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson. Magnetic and structural properties of mn-implanted GaN. Appl. Phys. Lett., 78:3475, 2001.
[14] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett., 79:3473, 2001.
[15] S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H. Hori. Molecular beam epitaxy of wurtzite (Ga,Mn)N ‾lms on sapphire(0001) showing the ferromagnetic behaviour at room temperature. J. Cryst. Growth, 237:1358, 2002.
[16] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani. Electric-‾eld control of ferromagnetism. Nature, 408:944, 2000.
[17] Y. Q. Jia, R. C. Shi, and S. Y. Chou. Magnetic-‾eld sensors using GMR multilayer. IEEE Trans. Magn., 32:4707, 1996.
[18] P. R. Hammar, B. R. Bennett, M. J. Yang, and Mark Johnson. Observation of spin injection at a ferromagnet-semiconductor interface. Phys. Rev. Lett., 83:203, 1999.
[19] S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Lin‾eld, and D. A. Ritchie. Spin-valve effects in a semiconductor field-effect transistor: A spintronic device. Phys. Rev. B, 60:7764, 1999.
[20] D. R. Loraine, D. I. Pugh, H. Jenniches, R. Kirschman, S. M. Thompson, W. Allen, C. Sirisathikul, and J. F. Gregg. Effect of silicon crystal structure on spin transmission through spin electronic devices. J. Appl. Phys., 87:5161, 2000.
[21] C. M. Hu, J. Nitta, A. Jensen, J. B. Hansen, and H. Takayanagi. Spin polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts. Phys. Rev. B, 63:125333, 2001.
[22] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Schonherr, and K. H. Ploog. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett., 87:016601, 2001.
[23] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B, 62:R4790, 2000.
[24] D. Hagele, M. Oestreich, W.W. Ruhle, N. Nestle, and K. Eberl. Spin transport in GaAs. Appl. Phys. Lett., 73:1580, 1998.
[25] I. Malajovich, J.M. Kikkawa, D.D. Awschalom, J.J. Berry, and N. Samarth. Coherent transfer of spin through a semiconductor heterointerface. Phys. Rev. Lett., 84:1015, 2000.
[26] S.J. Sun, S.S. Cheng, and H.H. Lin. Spiral exchange interaction in diluted magnetic semiconductor junction. Appl. Phys. Lett., 84:2862, 2004.
[27] M. A. Ruderman and C. Kittel. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev., 96:99, 1954.
[28] K. Yosida. Magnetic properties of cu-mn alloys. Phys. Rev., 106:893, 1957.
[29] P. Bruno and C. Chappert. Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys. Rev. B, 46:261, 1992.
[30] P. Bruno and C. Chappert. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett., 67:1602, 1991.
[31] Charles Kittel. Quantum Theory of Solids, 2nd Revised Edition. Wiley, 1987.
[32] George Gruner. Density Waves in Solids. Addison-Wesley Publishing company, 1994.
[33] P. A. Wolff. Spin susceptibility of an electron gas. Phys. Rev., 120:814, 1960.
[34] S. Doniach and E.H. Sondheimer. Green's Functions for Solid State Physicists. Imperial College Press, 1998.
[35] C. Camilleri, F. Teppe, D. Scalbert, Y. G. Semenov, M. Nawrocki, M. Dyakonov, J. Cibert, S. Tatarenko, and T. Wojtowicz. Electron and hole spin relaxation in modulation-doped CdMnTe quantum wells. Phys. Rev. B, 64:085331, 2001.
[36] A. V. Kimel, G. V. Astakhov, G. M. Schott, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and T. H.Rasing. Picosecond dynamics of the photoinduced spin polarization in epitaxial (Ga,Mn)As films. Phys. Rev. Lett., 92:237203, 2004.