簡易檢索 / 詳目顯示

研究生: 莎淑蔓
Shahim, Suman
論文名稱: 以離子選擇膜塗佈之電晶體感測器於高電場效應下進行高靈敏度三價鉻與六價鉻檢測
Ultra-Sensitive Multiplexed Chromium(VI) and Chromium(III) Detection Employing High Field Effect of Ion-Selective Membrane Coated FET Sensor
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 李博仁
Li, Bor-Ran
王玉麟
Wang, Yu-Lin
林宗宏
Lin, Zong-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 58
中文關鍵詞: 重金屬感測器
外文關鍵詞: Heavy metal, Sensor, Chromium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重金屬毒性是人們最關心的問題。人為誘發因素和自然現像都是造成這些有毒元素在反應狀態下濃度上升的原因,這些有毒元素對生態系統的動植物群是有害的。電鍍行業和製革廠釋放含高鉻的廢水。 Cr(VI)在還原劑存在下被還原為Cr(III),相較之下較為穩定。水源地區附近的水將會受鉻污染,數量為2-5克/升。衛生組織規定的安全限制在0.05毫克/升以內。這種重金屬的過量消耗將導致生物累積,導致遺傳毒性。 Cr(III)和Cr(VI)已被國際癌症研究機構(癌症研究機構)分別確定為第三類和第一類致癌物。因此,快速的檢驗可以有效確保公民不會受到超出這些致癌物質容忍限度的污染。本文列舉了一種偵測極限低、靈敏度高、回報時間快的便攜式生物傳感器的檢測機、用以有效測定液體樣品中鉻的濃度。該新型生物傳感器採用聚氯乙烯(PVC)基質和特定目標化合物,並採用擴展的柵極結構來製造,由於使用單個FET而使得擾動小,可使流通量高。柵極傳感元件與目標受體功能化。當目標溶液與受體結合時,目標溶液影響電導,從而改變有效柵電壓作為目標離子濃度的函數。隨著目標Cr離子濃度的增加,晶體管漏電流呈上升趨勢。該器件性能不受pH的影響,因此該應用可擴展到廣泛的液體介質,例如河水、地下水、果汁、醃製食品等。響應時間近5分鐘,離子選擇膜場效應管易於使用,便於攜帶,價格便宜;使生物傳感器在監測地下水水質時達到最佳使用。其檢測限與ICP-MS、AAS等現代檢測技術相當。這種基準化實驗室設備昂貴,需要時間,需要訓練有素的人員,使其不適於日常應用。這些缺點被離子選擇性薄膜塗覆的場效應晶體管所克服,該晶體管便於使用且用戶界面簡單,便攜且製造成本低,並可集成到從保健、動態水質監測到食品加工的各種應用中。


    Heavy metal toxicity is an issue of prime concern. Both human-induced factors and natural phenomena are responsible for the rising concentrations of these toxic elements in the reactive state which prove detrimental to the flora and fauna of ecosystems. Electroplating industry and tanneries release effluents containing high concentrations of total Chromium. Cr (VI) gets reduced in the presence of reducing agent to Cr (III), which is comparatively more stable. Regions in the vicinity of such sources will have water bodies contaminated with total Chromium in the order of 2 to 5 g/L. Standards set by WHO gives safe limits to be within 0.05 mg/L. Overconsumption of this heavy metal will cause bio-accumulation leading to genotoxicity. Cr (III) and Cr (VI) have been identified as group III and I carcinogen respectively by the International Agency for Research on Cancer (IARC). Hence the need of the hour is to ensure citizens are not exposed beyond tolerable limits to these carcinogens. This report enumerates detection mechanism, calibration, and characterization of a portable biosensor with low detection limit, high sensitivity and fast response time to effectively determine the concentration of total chromium present in a liquid sample. The novel biosensor presented here uses polyvinyl chloride (PVC) matrix with target-specific compound and is fabricated using extended gate configuration which facilitates lesser fluctuation due to use of single FET and higher throughput. The gate sensing element is functionalized with the target receptor. The target solution when dropped binds with receptor influencing the conductance and consequently altering the effective gate voltage as a function of the concentration of target ion. The electrode reveals an increasing trend of transistor drain current with an increase in the target Cr ion concentration. The device performance is not affected by pH and hence the application can be extended to a wide range of liquid media, for instance, river water, groundwater, juices, tanned foods, and so on. The response time being nearly 5 minutes, the Ion Selective Membrane FET is easy to use, portable and affordable; making the bio-sensor optimum for daily use to monitor groundwater quality. The limit of detection is comparable to contemporary detection techniques like ICP-MS and AAS. Such benchtop laboratory equipment are expensive, demand time, and require trained personnel making them unfit for daily application. These drawbacks are overcome by the ion-selective membrane coated field effect transistor which is convenient to use with a simple user interface, portable and cheap to fabricate and can be integrated into a wide variety of application ranging from health care, dynamic water quality monitoring to food processing.

    Chapter 1 Introduction 1.1 Motivation.............................................................................................................6 1.2 Objective................................................................................................................8 Chapter 2 Literature Review................................................................................10 2.1 Chromium............................................................................................................11 2.1.1 Chromium exposure to Human and adverse effects.......................11 2.2 Traditional methods of ion detection.......................................................14 2.3 Ion selective electrodes(ISE).........................................................................15 2.3.1 Characterization of Ion Selective Electrode.........................................17 2.4 Chromium Ion selective membrane..........................................................18 2.5 Ion selective FET (ISFET) ................................................................................19 Chapter 3 Preparation and Design of Experiments...............................................................................................................24 3.1 Cr-ISMFET Fabrication.....................................................................................24 3.2 ISM Preparation and Immobilisation..........................................................25 3.3 Measurement method......................................................................................26 Chapter 4 Results and Discussion.......................................................................29 4.1 Cr (III) detection test by ext. gate ISMFET.................................................29 4.2 Cr (VI) detection test by ext. gate ISMFET..................................................35 4.3 Investigation of sensor mechanism..............................................................37 4.4 Selectivity and Interfering ion test for Cr (III) and Cr (VI)......................41 Chapter 5 Application................................................................................................47 5.1 Cr (III) and C (VI) detection in tannery waste water sample.................47 5.2 Cr (III) and Cr (VI) detection in electroplating waste...............................50 Chapter 6 Conclusion…............................................................................................53 References......................................................................................................................55

    1 Hsu, L.-C. et al. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Scientific Reports 6, 34250, doi:10.1038/srep34250
    https://www.nature.com/articles/srep34250#supplementary-information (2016).
    2 Norseth, T. The carcinogenicity of chromium. Environmental health perspectives 40, 121-130, doi:10.1289/ehp.8140121 (1981).
    3 Russo, P. et al. Molecular mechanisms of hexavalent chromium-induced apoptosis in human bronchoalveolar cells. American journal of respiratory cell and molecular biology 33, 589-600, doi:10.1165/rcmb.2005-0213OC (2005).
    4 Jia, Z., Li, S. & Wang, L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports 8, 3256, doi:10.1038/s41598-018-21569-6 (2018).
    5 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metal toxicity and the environment. EXS 101, 133-164, doi:10.1007/978-3-7643-8340-4_6 (2012).
    6 Bergveld, P. ISFET, theory and practice. IEEE Sensor Conference, Toronto (2016).
    7 Scharf, B. et al. Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports 4, 5729, doi:10.1038/srep05729
    https://www.nature.com/articles/srep05729#supplementary-information (2014).
    8 Lee, C.-S., Kim, S. & Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 9, 7111-7131 (2009).
    9 Ambacher, O. et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of applied physics 85, 3222-3233 (1999).
    10 Gumpu, M. B., Sethuraman, S., Krishnan, U. M. & Rayappan, J. B. B. A review on detection of heavy metal ions in water–An electrochemical approach. Sensors and Actuators B: Chemical 213, 515-533 (2015).
    11 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. in Molecular, clinical and environmental toxicology 133-164 (Springer, 2012).
    12 Duffus, J. H. " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and applied chemistry 74, 793-807 (2002).
    13 Verma, R. & Dwivedi, P. Heavy metal water pollution-A case study. Recent research in science and technology 5 (2013).
    14 Jomova, K. et al. Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology 31, 95-107 (2011).
    15 Baba, H. et al. The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Modern Pathology 26, 1228 (2013).
    16 Izbicki, J. A. et al. Cr (VI) occurrence and geochemistry in water from public-supply wells in California. Applied Geochemistry 63, 203-217 (2015).
    17 McLean, J. E., McNeill, L. S., Edwards, M. A. & Parks, J. L. Hexavalent chromium review, part 1: Health effects, regulations, and analysis. Journal‐American Water Works Association 104, E348-E357 (2012).
    18 Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Scientific Reports 8 (2018).
    19 Taylor, J. Y., Wright, M. L. & Housman, D. Lead toxicity and genetics in Flint, MI. NPJ genomic medicine 1 (2016).
    20 Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. & Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology 7, 60-72 (2014).
    21 Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53-72 (2005).
    22 Lunk, H.-J. Discovery, properties and applications of chromium and its compounds. ChemTexts 1, 6 (2015).
    23 Pradhan, D., Sukla, L. B., Sawyer, M. & Rahman, P. K. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. Journal of industrial and engineering chemistry 55, 1-20 (2017).
    24 Lennartson, A. The colours of chromium. Nature chemistry 6, 942 (2014).
    25 Junaid, M., Hashmi, M. Z., Tang, Y.-M., Malik, R. N. & Pei, D.-S. Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Scientific Reports 7, 8848 (2017).
    26 Russo, P. et al. Molecular mechanisms of hexavalent chromium–induced apoptosis in human bronchoalveolar cells. American journal of respiratory cell and molecular biology 33, 589-600 (2005).
    27 Oze, C., Bird, D. K. & Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences 104, 6544-6549 (2007).
    28 Oliveira, H. Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany 2012 (2012).
    29 Saikia, S. K., Gupta, R., Pant, A. & Pandey, R. Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. Journal of Exposure Science and Environmental Epidemiology 24, 180 (2014).
    30 Zhitkovich, A. Chromium in drinking water: sources, metabolism, and cancer risks. Chemical research in toxicology 24, 1617-1629 (2011).
    31 Edition, F. Guidelines for drinking-water quality. WHO chronicle 38, 104-108 (2011).
    32 Straif, K. et al. A review of human carcinogens—part C: metals, arsenic, dusts, and fibres. The lancet oncology 10, 453-454 (2009).
    33 Ahmed, F., Hossain, M., Abdullah, A. T., Akbor, M. & Ahsan, M. Public health risk assessment of chromium intake from vegetable grown in the wastewater irrigated site in Bangladesh. Pollution 2, 425-432 (2016).
    34 Guan, J. et al. Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: Distribution, chemical fraction, contamination assessment and source apportionment. Scientific Reports 8, 12231 (2018).
    35 Sedman, R. M. et al. Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. Journal of environmental science and health part C 24, 155-182 (2006).
    36 Wang, L.-L., Wang, J.-Q., Zheng, Z.-X. & Xiao, P. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium (III) and chromium (VI) in environmental sediment samples. Journal of Hazardous Materials 177, 114-118 (2010).
    37 Zhang, N., Suleiman, J. S., He, M. & Hu, B. Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta 75, 536-543 (2008).
    38 Yalçin, S. & Apak, R. Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent. Analytica Chimica Acta 505, 25-35, doi:https://doi.org/10.1016/S0003-2670(03)00498-7 (2004).
    39 Kiran, K. et al. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials 150, 582-586, doi:https://doi.org/10.1016/j.jhazmat.2007.05.007 (2008).
    40 Shaffer, R. E., Cross, J. O., Rose-Pehrsson, S. L. & Elam, W. T. Speciation of chromium in simulated soil samples using X-ray absorption spectroscopy and multivariate calibration. Analytica Chimica Acta 442, 295-304, doi:https://doi.org/10.1016/S0003-2670(01)01004-2 (2001).
    41 Hassan, S. S., El-Shahawi, M. S., Othman, A. M. & Mosaad, M. A. A potentiometric rhodamine-B based membrane sensor for the selective determination of chromium ions in wastewater. Anal Sci 21, 673-678 (2005).
    42 Yari, A. & Bagheri, H. Determination of Cr (VI) with Selective Sensing of Cr (VI) Anions by a PVC-Membrane Electrode Based on Quinaldine Red. Journal of the Chinese Chemical Society 56, 289-295, doi:10.1002/jccs.200900042 (2013).
    43 Choi, Y.-W., Minoura, N. & Moon, S.-H. Potentiometric Cr (VI) selective electrode based on novel ionophore-immobilized PVC membranes. Talanta 66, 1254-1263, doi:https://doi.org/10.1016/j.talanta.2005.01.040 (2005).
    44 Choi, Y.-W. & Moon, S.-H. Determination of Cr (VI) using an Ion Selective Electrode with SLMs containing Aliquat336. Vol. 92 (2004).
    45 ICP-OES and ICP-MS detection limit guidance. (Nanoscience).
    46 Mahmood, H. S. et al. Sensing Soil Properties in the Laboratory, In Situ, and On-Line. Advances in Agronomy 114, 155-224, doi: 10.1016/B978-0-12-394275-3.00003-1 (2012).
    47 Bakker, E., Bühlmann, P. & Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chemical Reviews 97, 3083-3132, doi:10.1021/cr940394a (1997).
    48 Buhlmann, P., Pretsch E Fau - Bakker, E. & Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors.
    49 Frant, M. S. Historical perspective. History of the early commercialization of ion-selective electrodes. Analyst 119, 2293-2301, doi:10.1039/an9941902293 (1994).
    50 Tian, X. et al. 4-Sulfocalix[4]arene/Cucurbit[7]uril-Based Supramolecular Assemblies through the Outer Surface Interactions of Cucurbit[n]uril. ACS Omega 3, 6665-6672, doi:10.1021/acsomega.8b00829 (2018).
    51 Bakker, E. Electroanalysis with Membrane Electrodes and Liquid–Liquid Interfaces. Analytical Chemistry 88, 395-413, doi:10.1021/acs.analchem.5b04034 (2016).
    52 Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology.
    53 Duroux, P. et al. The ion sensitive field effect transistor (ISFET) pH electrode: a new sensor for long term ambulatory pH monitoring. Gut 32, 240 (1991).
    54 Bousse, L. & Bergveld, P. The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs. Sensors and Actuators 6, 65-78, doi:https://doi.org/10.1016/0250-6874(84)80028-1 (1984).
    55 Haak, J. R., van der Wal, P. D. & Reinhoudt, D. N. Molecular materials for the transduction of chemical information by CHEMFETs. Sensors and Actuators B: Chemical 8, 211-219, doi:https://doi.org/10.1016/0925-4005(92)85020-W (1992).
    56 Abidin, M. A. B. Z. et al. Data acquisition for ISFET pH sensor system by using Seeeduino Stalker as a controller. IEEE 4th Control and System Graduate Research Colloquium 4, 127-131 (2013).
    57 Yates, D. E., Levine, S. & Healy, T. W. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70, 1807-1818, doi:10.1039/f19747001807 (1974).
    58 Yao, P.-C., Chiang, J.-L. & Lee, M.-C. Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sciences 28, 47-54, doi:https://doi.org/10.1016/j.solidstatesciences.2013.12.011 (2014).
    59 Spijkman, M. et al. Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Vol. 98 (2011).
    60 Chu, C.-H. et al. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Scientific Reports 7, 5256, doi:10.1038/s41598-017-05426-6 (2017).
    61 Tripathi, A. & Dwivedi, A. K. Studies on recovery of chromium from tannery wastewater by Reverse Osmosis, Journal of Industrial Pollution Control 28(1), 29-34, (2012).
    62 Kumar, R. Bishnoi, N. Nagpal, G. & Bishnoi, K. Biosorption of Chromium (VI) From Aqueous Solution and Electroplating Wastewater Using Fungal Biomass, The Chemical Engineering Journal 135(3), 202-208, doi: 10.1016/j.cej.2007.03.004 (2008).
    63 Abebe, A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options, Journal of Environmental Protection 1, 53-58, doi:10.4236/jep.2010.11007 (2010).
    64 Mohammadhosseini, M. Assessment of Trace Total Chromium Together with Other Pollutants in the Sewages of Electroplating Industries. Asian Journal of Chemistry 24, 1417-1420 (2012).

    QR CODE