研究生: |
陳致翔 |
---|---|
論文名稱: |
監控單一觀測值之製程變異數管制圖 |
指導教授: | 黃榮臣 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 指數加權均方差 、指數加權根均方差 、指數加權移動變異數 、平均連串長度 、修正指數加權均方差 、修正指數加權移動變異數 |
外文關鍵詞: | exponentially weighted mean squared error, exponentially weighted root mean squared error, exponentially weighted moving variance, average run length, corrected exponentially weighted mean squared error, corrected exponentially weighted moving variance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當生產過程中的合理子群(樣本)只有一個觀測值,這樣的情況最明顯的缺點就是失去樣本中變異數的資訊,因而無法直接來估計製程變異數。在合理子群只有一個觀測值的狀況下,對監控製程的變異數,文獻上並沒有很多有效的方法被提出來,其中較佳的方法為MacGregor 和Harris(1993)提出的EWMS與EWMV管制圖,但是在實用上存在一些問題。本文針對這兩種管制圖將原來的管制統計量做適當的修正,並提出新的管制界限來改善這些問題,我們利用統計模擬來顯示和說明原來方法的缺點,然後針對新舊方法做比較並說明新方法在實際上有較好的適用性。
[1] Box, G. E. P. (1954). “Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems: Effect of Inequality of Variance in One-Way Classification”. Annals of Mathematical Statistics 25, pp. 290-302.
[2] Chen, G. and Cheng, S. W. and Xie, H. (2001). “Monitoring Process Mean and Variability With One EWMA Chart”. Journal of Quality Technology 33, pp. 223-233.
[3] Crowder, S. V. and Hamilton, M. (1992). “An EWMA for Monitoring Standard Deviation”. Journal of Quality Technology 24, pp. 12-21.
[4] Domangue, R. and Patch, S. C. (1991). “Some Omnibus Exponentially Weighted Moving Average Statistical Process Monitoring Schemes”. Technometrics 33, pp. 299-313.
[5] MacGregor, J. F. and Harris, T. J. (1993). “The Exponentially Weighted Moving Variance”. Journal of Quality Technology 25, pp. 106-118.
[6] Montgomery, D. C. (1991). Statistical Quality Control. John Wiley & Sons, New York, NY.
[7] Nelson, L. S. (1980). “The Mean Square Successive Difference Test”. Journal of Quality Technology 12, pp. 174-175.
[8] Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrics 41, pp. 100-114.
[9] Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages”. Technometrics 1, pp. 239-250.