研究生: |
鄭清斌 Cheng, Ching-Pin |
---|---|
論文名稱: |
The Enhancement of Relation Extraction in Discovering Business Ecosystems for a Technology Monitoring Service 利用加強關係擷取建立商業生態系統的科技觀測服務 |
指導教授: |
林福仁
Lin, Fu-Ren |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 商業生態系統 、科技監測 、關係擷取 |
外文關鍵詞: | Business Ecosystem, Technology Monitoring, Relation Extraction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The fast evolution of technology has made an intensive competition environment, the company which can update information rapidly and precisely will take the competitive advantage. However, the information explosion made us have to read all the information. It is time consuming to keep information from various sources updated, and could potentially delay the reaction to the changing technology and business environments.
This thesis proposes a technology monitoring service to monitor the evolution of business ecosystem through extracting relations from various sources of information automatically. In order to construct business ecosystem that consist of companies, products and technologies. This study enhances the relation extraction methodology to extract mutual interaction from multi name entity types.
The service of the proposed system helps companies forecast the technology trends and market status through business ecosystem and other information extracted through text mining. To reduce the monitoring cost of companies, the system can extract information that companies interested in automatically and effectively catch the information related to the evolution of business ecosystem in real time.
因為科技快速的演進,我們已經面臨一個超競爭的環境,如果公司能快速且準確的掌握市場訊息,就可以取得競爭優勢,然而,在現今資訊爆炸的時代,我們不可能去閱讀所有的訊息,即使只是保持從幾個資訊來源得到最新的資訊也是非常耗費時間的,並且有可能會延遲與不斷變化的科技和商業環境的互動。
本論文提出一個科技觀測服務來監測商業生態系統的演化,藉由自動的從不同的資訊來源中擷取關係來建立商業生態系統;為了建立由公司、產品及科技所組成的商業生態系統,本研究加強關係擷取方法從多個不同的實體名稱(Name entity)類別來抓取之間互動的關係。
透過本系統所提供的服務,期望藉由商業生態系統及由文字探勘所萃取出的其他資訊,可以幫助公司預測未來的科技趨勢以及市場狀況,而為了減少公司監測的成本,本系統可以自動抓取公司有興趣的資訊和即時且有效率的抓取跟商業生態系統演化相關的訊息。
Adomavicius, G., Bockstedt, J.C., Gupta, A., & Kauffman, R. J. (2007). Technology roles and paths of influence in an ecosystem model of technology evolution. Information Technology and Management, 8(2), 185-202.
Appelt, D. E., & Israel, D. (1999). Introduction to Information Extraction Technology. A tutorial prepared for IJCAI-99," Artificial Intelligence Center, SRI International.
Cilibrasi, R. L., & Vitanyi, P.M.B. (2007). The Google Similarity Distance. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 19(3), 370-383.
Cunningham, H. (2005) "Information Extraction, Automatic," Encyclopedia of Language and Linguistics. Elsevier..
Fundel, K., Kuffner, R., & Zimmer, R. (2007). RelEx—Relation extraction using dependency parse trees. Bioinformatics , 23(3), 365-371.
Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75-105.
Kongthon, A (2004). A Text Mining Framework for Discovering Technological Intelligence to Support Science and Technology Management (Unpublished doctoral dissertation). Georgia Institute of Technology.
Kushmerick, N (1997). Wrapper induction for information extraction (Unpublished doctoral dissertation). University of Washington.
Losiewicz, P., Oard, D., & Kostoff, R (2000). "Text Data Mining to Support Science and technology management," Journal of Intelligent Information Systems 15(2), 99-119.
Mansouri, A., Affendey, L. S., & Mamat, A. (2008). Named Entity Recognition Approaches. International Journal of Computer Science and Network Security, 8 (2), 339-344.
Marneffe, M.-C., MacCartney, B., & Manning, C. D. (2006). Generating Typed Dependency Parses from Phrase Structure Parses.
Porter, A. L., & Cunningham, S. W. (2005). Tech Mining: Exploiting New Technologies for Competitive Advantage. United States of America: John Wiley & Sons, Inc.
Thomson R. (2009). Home | OpenCalais. Retrieved 12 24, 2009, from OpenCalais: http://www.opencalais.com/
Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G.M., & Milios, E.E. (2005). Semantic similarity methods in wordNet and their application to information retrieval on the web. In Proceedings of the seventh ACM international workshop on Web information and data management (pp. 10-16).
Yuan, J., and Zhu, D. (2004). A Study on Technology Monitoring Based on Text Mining to Support Science and Technology Management. In Proceedings of World Engineers' Convention, (pp. 47-51).