簡易檢索 / 詳目顯示

研究生: 莊祐鈞
Zhuang, You-Jun
論文名稱: 三維點雲的重建與細化網格演算法
Algorithm for Reconstruction and Refinement of Meshes from Point Clouds
指導教授: 吳金典
Wu, Chin-Tien
宋瓊珠
SUNG, CHIUNG-JUE
口試委員: 張書銘
Chang, Shu-Ming
朱家杰
CHU, CHIA-CHIEH
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 三維點雲八元樹泊松方程表面重建共形映射
外文關鍵詞: 3D Point Cloud, Octree, Poisson Equation, Surface Reconstruction, Conformal Map
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今科學的急速發展下,三維重建能用在許多領域。一般而言,三維影像所儲存成的電子資訊多為點雲資訊,意即只有掃描到的點座標,因此三維重建旨在處理這些資訊。本篇論文主要以Kazhdan [1] 提出的架構去延伸,從初始的點雲建構出法向量,進一步由此法向量透過解一個帕松方程式求得此點雲所代表的指示函數,最後將此函數透過移動立方體法或是移動四面體法求得此物品的三角網格,然而網格通常的品質(quality) 並不好,透過對此三角網格的後處理點融合(point merge)、邊交換(edge swap) 與球面上的共形映射(spherical conformal map),進而增進此三角網格的品質。


    With the rapid development of science today, 3D reconstruction
    can be used in many fields. In general, the
    electronic information stored in 3D images is mostly point
    cloud information, it means only the scanned point cloud.
    This thesis is mainly extended by the architecture proposed by Kazhdan [1]. We construct normal vectors from the initial point cloud. Further we use these normal vectors to solve a poisson equation then we obtain the indicator function representing this point cloud. Finally, the indicator function is used to obtain the triangle mesh of the object by the marching cube method or the marching tetrahedra method. However, the quality of the mesh is generally poor, we improve the quality of the mesh by post-processing the triangular mesh, such as point merge, edge swap, and spherical conformal map.

    誌謝 摘要i Abstract i List of parameters iii 1 Introduction 1 1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Our thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prior knowledge 7 2.0.1 Unit vector . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.0.2 Normal vector . . . . . . . . . . . . . . . . . . . . . . . . 7 2.0.3 Singular value decomposition . . . . . . . . . . . . . . . . 8 2.0.4 Wellposedness of Poisson equation . . . . . . . . . . . . . 8 2.0.5 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . 9 2.0.6 Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . 11 2.0.7 Diffuse element method . . . . . . . . . . . . . . . . . . . 12 2.0.8 Moving least squares method . . . . . . . . . . . . . . . . . 12 3 Poisson Surface Reconstruction 15 3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Normal vector and orientation consistency . . . . . . . . . . . . . . 17 3.2.1 Principal component analysis . . . . . . . . . . . . . . . . 18 3.2.2 Consistent normal vector orientation . . . . . . . . . . . . . 19 3.3 Vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Smoothing filter Box filter . . . . . . . . . . . . . . . . . 25 3.3.3 Create vector field . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Methods for solving Poisson equation . . . . . . . . . . . . . . . . 28 3.4.1 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . 28 3.4.2 Finite element method (FEM) . . . . . . . . . . . . . . . . 29 3.5 Isosurface extraction . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.1 Marching cubes . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.2 Marching tetrahedra . . . . . . . . . . . . . . . . . . . . . 41 4 Triangular mesh postprocessing 43 4.1 Point merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Edge swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Conformal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Experimental Results and Discussions 51 5.1 Experimental results of surface reconstruction . . . . . . . . . . . . 51 5.1.1 Normal vector orientation . . . . . . . . . . . . . . . . . . 51 5.1.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . 52 5.1.3 Surface reconstruction with several methods . . . . . . . . 54 5.2 Experimental results of triangular mesh postprocessing . . . . . . . 57 5.2.1 Point merge and edge swap . . . . . . . . . . . . . . . . . . 57 5.2.2 Conformal map . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Conclusions and future work 65 References 67

    [1] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.
    In Proceedings of the fourth Eurographics symposium on Geometry
    processing, volume 7, 2006.
    [2] Herbert Edelsbrunner and Ernst P Mücke. Threedimensional
    alpha shapes.
    ACM Transactions on Graphics (TOG), 13(1):43–72, 1994.
    [3] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoibased
    surface reconstruction algorithm. In Proceedings of the 25th annual conference
    on Computer graphics and interactive techniques, pages 415–421, 1998.
    [4] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust,
    unions of balls, and the medial axis transform. Computational Geometry, 19(23):
    127–153, 2001.
    [5] JeanDaniel
    Boissonnat. Geometric structures for threedimensional
    shape
    representation. ACM Transactions on Graphics (TOG), 3(4):266–286, 1984.
    [6] Demetri Terzopoulos and Manuela Vasilescu. Sampling and reconstruction
    with adaptive meshes. In CVPR, volume 91, pages 70–75, 1991.
    [7] Shigeru Muraki. Volumetric shape description of range data using “blobby
    model". In Proceedings of the 18th annual conference on Computer graphics
    and interactive techniques, pages 227–235, 1991.
    [8] Greg Turk and James F O’brien. Modelling with implicit surfaces that interpolate.
    ACM Transactions on Graphics (TOG), 21(4):855–873, 2002.
    [9] C Rader and NJIToA Brenner. A new principle for fast fourier transformation.
    IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(3):264–
    266, 1976.
    [10] JN Reddy. An introduction to the finite element method, volume 1221.
    McGrawHill
    New York, 2010.
    [11] Nira Dyn, Kai Hormann, SunJeong
    Kim, and David Levin. Optimizing 3d
    triangulations using discrete curvature analysis. Mathematical methods for
    curves and surfaces, 1:135–146, 2001.
    [12] Yueqi Cao, Didong Li, Huafei Sun, Amir H Assadi, and Shiqiang Zhang. Efficient
    curvature estimation for oriented point clouds. stat, 1050:26, 2019.
    [13] Dongmei Zhang and Martial Hebert. Harmonic maps and their applications
    in surface matching. In Proceedings.IEEE Computer Society Conference on
    Computer Vision and Pattern Recognition (Cat. No PR00149), volume 2, pages
    524–530, 1999.
    [14] R. Schoen and S. T. Yau. Lectures on harmonic maps. International Press,
    Cambridge, MA, 1997.
    [15] Pui Tung Choi, Ka Chun Lam, and Lok Ming Lui. Flash: Fast landmark
    aligned spherical harmonic parameterization for genus0
    closed brain surfaces.
    SIAM Journal on Imaging Sciences, 8(1):67–94, 2015.
    [16] J. Demmel and W. Kahan. Computing small singular values of bidiagonal
    matrices with guaranteed high relative accuracy. SIAM J. Sci. Statist. Comput.,
    11 (5), pages 37–52, 1990.
    [17] Karel Rektorys. The friedrichs inequality. the poincaré inequality. Variational
    Methods in Mathematics, Science and Engineering (2nd ed.). Dordrecht: Reidel,
    page 188–198, 2001.
    [18] Walter A Strauss. Partial differential equations: An introduction. John Wiley
    & Sons, 2007.
    [19] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela
    Mayero. A coq formal proof of the laxmilgram
    theorem. pages 79–89,
    2017.
    [20] Stefano Rebay. Efficient unstructured mesh generation by means of delaunay
    triangulation and bowyerwatson
    algorithm. Journal of computational physics,
    106(1):125–138, 1993.
    [21] B Nayroles, G Touzot, and P Villon. Generalizing the finite element method:
    diffuse approximation and diffuse elements. Computational mechanics,
    10(5):307–318, 1992.
    [22] David Levin. Meshindependent
    surface interpolation. In Geometric modeling
    for scientific visualization, pages 37–49. Springer, 2004.
    [23] Kim Esbensen Wold Svante and Paul Geladi. Principal component analysis.
    Chemometrics and intelligent laboratory systems 2.13,
    pages 37–52, 1987.
    [24] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
    salesman problem. Proceedings of the American Mathematical society,
    7(1):48–50, 1956.
    [25] Robert Clay Prim. Shortest connection networks and some generalizations.
    The Bell System Technical Journal, 36(6):1389–1401, 1957.
    [26] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
    Introduction to algorithms. MIT press, 2009.
    [27] Donald Meagher. Octree encoding: A new technique for the representation,
    manipulation and display of arbitrary 3d
    objects by computer. Rensselaer
    Polytechnic Institute, 1980.
    [28] Pascal Gwosdek, Sven Grewenig, Andrés Bruhn, and Joachim Weickert. Theoretical
    foundations of gaussian convolution by extended box filtering. In International
    Conference on Scale Space and Variational Methods in Computer
    Vision, pages 447–458. Springer, 2011.
    [29] Thomas JR HUGHES. The finite element method: Linear static and dynamic
    finite element analysis. Courier Corporation, 2012.
    [30] Pavel. ŜOLÍN. Partial differential equations and the finite element method.
    John Wiley & Sons, 2005.
    [31] A Selman, A Merrouche, C KnopfLenoir,
    et al. 3d mesh refinement procedure
    using the bisection and rivara algorithms with mesh quality assessment. Revue
    Europeenne des Elements Finis, 2001.
    [32] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric
    discrimination: Consistency properties. International Statistical Review/
    Revue Internationale de Statistique, 57(3):238–247, 1989.
    [33] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
    3d surface construction algorithm. ACM siggraph computer graphics,
    21(4):163–169, 1987.
    [34] Akio Doi and Akio Koide. An efficient method of triangulating equivalued
    surfaces by using tetrahedral cells. IEICE TRANSACTIONS on Information
    and Systems, 74(1):214–224, 1991.
    [35] André Guéziec and Robert Hummel. Exploiting triangulated surface extraction
    using tetrahedral decomposition. IEEE Transactions on visualization and
    computer graphics, 1(4):328–342, 1995.
    [36] Lok Ming Lui, Ka Chun Lam, Tsz Wai Wong, and Xianfeng Gu. Texture
    map and video compression using beltrami representation. SIAM Journal on
    Imaging Sciences, 6(4):1880–1902, 2013.
    [37] Xianfeng Gu and Baba C Vemuri. Matching 3d shapes using 2d conformal
    representations. In International Conference on Medical Image Computing
    and ComputerAssisted
    Intervention, pages 771–780. Springer, 2004.

    QR CODE