研究生: |
何孟儒 Ho, Meng-Ru |
---|---|
論文名稱: |
人類再生基因家族蛋白質結構與功能之研究 Solution Structural and Functional Studies of Human Regenerating Gene Family Proteins |
指導教授: |
呂平江
Lyu, Ping-Chiang 陳金榜 Chen, Chinpan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 再生基因 、凝集素 、核磁共振 、甘露聚醣 、阿茲海默症 、澱粉樣纖維 |
外文關鍵詞: | regenerating gene, lectin, NMR, mannan, Alzheimer's disease, amyloid-like fibril |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部份:
人類再生基因第三型的蛋白質產物被發現存在埃茲海默症患者的病理組織切片中。而我們的研究也發現,在中性的酸鹼值條件下,再生基因第三型蛋白會聚合形成纖維狀的沈澱。由於此類型沉澱物質常見於許多神經元細胞病變的相關疾病中,因此了解此一具致病能力的纖維狀沉澱物的形成機制江有助於對疾病的預防與治療。我們利用核磁共振光譜儀、旋光光譜儀、傅立葉轉換紅外線光譜分析等生物物理學方法進行再生基因第三型蛋白的纖維狀沉澱物形成機制之研究。
結果顯示:再生基因第三型蛋白的纖維狀沉澱物具有蛋白酶K的耐受性但沒有其他典型因□摺板堆疊組成纖維物所有的剛果紅結合能力;在電子顯微鏡的觀察下,纖維狀沉澱物半徑自6到68奈米;在與一般存在水溶液中的再生基因第三型蛋白比較,兩者的二級結構組成並無太大的差異。此外,利用核磁共振光譜所解出的三級結構顯示,再生基因第三型蛋白的表面電荷分布呈對稱性,因此容易藉由電荷作用力拉近彼此距離形成聚合物。同時我們利用TANGO軟體預測再生基因第三型蛋白具有一段高□摺板堆疊能力的序列,並藉由胜肽合成此一序列驗證該片段即具有形成纖維狀沉澱物的能力。因此我們推測電荷作用力與利用高疏水性序列所所產生的□摺板堆疊為再生基因第三型蛋白形成纖維狀沈澱勿的主要原因。
第二部份:
人類再生基因蛋白第四型的蛋白質序列分析顯示其屬於凝集素家族成員。由於凝集素一般藉由與醣類的作用來進行其生理上的作用。在此我們利用表面電漿共振技術證明再生基因蛋白第四型蛋白具有與多醣類作用的能力,包括甘露聚糖與肝磷脂等醣類聚合物。為了標定再生基因蛋白第四型蛋白與多醣類作用的位置,我們利用核磁共振光譜來計算其三維結構。由於再生基因蛋白第四型蛋白有兩段高變異性的序列,因此影響光譜的品質而無法完整解出結構。藉由定點突變技術,我們成功穩定住蛋白質的摺合並解出其結構。而甘露聚糖與再生基因第四型蛋白結合位置也利用化學位移擾動實驗決定出兩個作用區域。其中一個位置和傳統凝極速與醣類結合區域相似;而另一個則是由前述兩段高變異性的序列所組成。核磁共振光譜偵測再生基因第四型蛋白與甘露聚糖聚合物發現此兩段區域會因醣類存在而趨於穩定,表示兩者間有作用。除了與多醣類的作用,我們亦證明再生基因第四型蛋白不具有形成纖維狀沉澱物的能力。在比較人類再生基因蛋白質產物後,第四型蛋白的表面電荷分布並不像其他型般正負電對稱存在。在少了電荷作用力影響下,再生基因第四型蛋白無法聚含產生纖維狀沈澱物。根據此一系列研究結果,人類再生基因蛋白雖然均具有相似的摺合結構,但藉由表面電荷分布及極性環狀結構便能達成不同的生理作用。
Part I
Human regenerating gene type III (RegIII) was identified in pathognomonic lesions of Alzheimer’s disease, a disease characterized by the presence of filamentous protein aggregates. Here, we showed that, at physiological pH, RegIII forms non-Congo red-binding, proteinase K-resistant fibrillar aggregates with diameters from 6 up to as large as 68 nm. Interestingly, circular dichroism and Fourier transform infrared spectra showed that, unlike typical amyloid fibrils, which have a cross-beta-sheet structure, these aggregates have a very similar secondary structure to that of the native protein, which is composed of two □-helices and eight □-strands, as determined by NMR techniques. Surface structure analysis showed that the positively-charged and negatively-charged residues were clustered on opposite sides, and strong electrostatic interactions between molecules were therefore very likely, which was confirmed by cross-linking experiments. In addition, several hydrophobic residues were found to constitute a continuous hydrophobic surface. These results and protein aggregation prediction using the TANGO algorithm led us to synthesize peptide Thr84 to Ser116, which, very interestingly, was found to form amyloid-like fibrils with a cross-□ structure. Thus, it seems that RegIII fibrillization is initiated by protein aggregation primarily due to electrostatic interactions, followed by conformational rearrangement, especially of the exposed hydrophobic loop, which is converted into a beta-sheet structure, then the RegIII fibril with a native-like conformation grows by the stacking of this short hydrophobic loop on top of the cross-beta spine.
Part II
Human Regenerating (Reg) gene family encoded secreted proteins, with amino acid sequences similar to C-type lectins. Among them, RegIV is highly expressed in mucosa cells of gastrointestinal tract during pathogen infection and carcinogenesis. It has been reported that RegIV is involved in anti-inflammation, cell proliferation, and increase of apoptosis resistance. However, the exact function of RegIV is not well defined. In this study, we provide the first direct evidence by surface plasmon resonance (SPR) that RegIV binds to polymeric carbohydrates, mannan and heparin but not monosaccharides, with the binding constant in the range around μM. To elucidate the structural basis for carbohydrate binding, we tried to use NMR spectroscopy to solve the structure of RegIV protein. However, the backbone amide resonances of two segments were missing. To solve this problem, the mutant that substituted Pro63 to Ser (P63S) was generated. Circular dichroism spectra showed that the secondary and tertiary structures of RegIV-P63S are quite similar with those of RegIV protein. The carbohydrate binding ability of RegIV-P63S was almost identical to that of wild-type protein as examined by SPR. The solution structure of P63S was determined and showed that RegIV contains two alpha-helices and eight beta-strands as a typical carbohydrate-recognization domain (CRD). The binding region of RegIV with mannan was determined by chemical shift perturbations of amide resonances of RegIV in complex with mannan. We find a binding cluster on the upper lobe of RegIV which is consisted by H69, D70, K73, Q75 and H100. In addition, base on the dynamic behavior difference, we propose that the highly flexible alpha2/beta4 and beta6/beta7 loops of RegIV also have mannan-binding characteristic in vitro. Although RegIV has a rigid scaffold as CRD, the plastic loops which composed by polar residues also provide the ability to recognize the sugars with various topologies. To combine these, RegIV is a polar macromolecule for ligands binding, such as polysaccharide on pathogen cell wall, glycoprotein or receptor and providing the basis for further functional investigations.
1. Kelly, J. W. (1998). The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8, 101-6.
2. Rochet, J. C. & Lansbury, P. T., Jr. (2000). Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10, 60-8.
3. Stefani, M. & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81, 678-99.
4. DeLellis, R. A., Glenner, G. G. & Ram, J. S. (1968). Histochemical observations on amyloid with reference to polarization microscopy. J Histochem Cytochem 16, 663-5.
5. Teplow, D. B. (1998). Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5, 121-42.
6. Sunde, M. & Blake, C. (1997). The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50, 123-59.
7. Dos Reis, S., Coulary-Salin, B., Forge, V., Lascu, I., Begueret, J. & Saupe, S. J. (2002). The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem 277, 5703-6.
8. Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D. & Dobson, C. M. (1998). Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95, 4224-8.
9. Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G. & Dobson, C. M. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96, 3590-4.
10. Jimenez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M. & Saibil, H. R. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18, 815-21.
11. Azriel, R. & Gazit, E. (2001). Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276, 34156-61.
12. Ivanova, M. I., Sawaya, M. R., Gingery, M., Attinger, A. & Eisenberg, D. (2004). An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci U S A 101, 10584-9.
13. Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. O., Riekel, C., Grothe, R. & Eisenberg, D. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773-8.
14. Baxa, U., Taylor, K. L., Wall, J. S., Simon, M. N., Cheng, N., Wickner, R. B. & Steven, A. C. (2003). Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J Biol Chem 278, 43717-27.
15. Lopez De La Paz, M., Goldie, K., Zurdo, J., Lacroix, E., Dobson, C. M., Hoenger, A. & Serrano, L. (2002). De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci U S A 99, 16052-7.
16. Lopez de la Paz, M. & Serrano, L. (2004). Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101, 87-92.
17. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. (2003). Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805-8.
18. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22, 1302-6.
19. Pawar, A. P., Dubay, K. F., Zurdo, J., Chiti, F., Vendruscolo, M. & Dobson, C. M. (2005). Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. J Mol Biol 350, 379-92.
20. Thompson, M. J., Sievers, S. A., Karanicolas, J., Ivanova, M. I., Baker, D. & Eisenberg, D. (2006). The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103, 4074-8.
21. Tachibana, K., Marquardt, H., Yokoya, S. & Friesen, H. G. (1988). Growth hormone-releasing hormone stimulates and somatostatin inhibits the release of a novel protein by cultured rat pituitary cells. Mol Endocrinol 2, 973-8.
22. Lasserre, C., Christa, L., Simon, M. T., Vernier, P. & Brechot, C. (1992). A novel gene (HIP) activated in human primary liver cancer. Cancer Res 52, 5089-95.
23. Livesey, F. J., O'Brien, J. A., Li, M., Smith, A. G., Murphy, L. J. & Hunt, S. P. (1997). A Schwann cell mitogen accompanying regeneration of motor neurons. Nature 390, 614-8.
24. Iovanna, J., Orelle, B., Keim, V. & Dagorn, J. C. (1991). Messenger RNA sequence and expression of rat pancreatitis-associated protein, a lectin-related protein overexpressed during acute experimental pancreatitis. J Biol Chem 266, 24664-9.
25. Orelle, B., Keim, V., Masciotra, L., Dagorn, J. C. & Iovanna, J. L. (1992). Human pancreatitis-associated protein. Messenger RNA cloning and expression in pancreatic diseases. J Clin Invest 90, 2284-91.
26. Motoo, Y., Itoh, T., Su, S. B., Nakatani, M. T., Watanabe, H., Okai, T. & Sawabu, N. (1998). Expression of pancreatitis-associated protein (PAP) mRNA in gastrointestinal cancers. Int J Pancreatol 23, 11-6.
27. Rosty, C., Christa, L., Kuzdzal, S., Baldwin, W. M., Zahurak, M. L., Carnot, F., Chan, D. W., Canto, M., Lillemoe, K. D., Cameron, J. L., Yeo, C. J., Hruban, R. H. & Goggins, M. (2002). Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62, 1868-75.
28. Nishimune, H., Vasseur, S., Wiese, S., Birling, M. C., Holtmann, B., Sendtner, M., Iovanna, J. L. & Henderson, C. E. (2000). Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat Cell Biol 2, 906-14.
29. Vasseur, S., Folch-Puy, E., Hlouschek, V., Garcia, S., Fiedler, F., Lerch, M. M., Dagorn, J. C., Closa, D. & Iovanna, J. L. (2004). p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. J Biol Chem 279, 7199-207.
30. Drickamer, K. & Taylor, M. E. (1993). Biology of animal lectins. Annu Rev Cell Biol 9, 237-64.
31. Graf, R., Schiesser, M., Scheele, G. A., Marquardt, K., Frick, T. W., Ammann, R. W. & Bimmler, D. (2001). A family of 16-kDa pancreatic secretory stress proteins form highly organized fibrillar structures upon tryptic activation. J Biol Chem 276, 21028-38.
32. Duplan, L., Michel, B., Boucraut, J., Barthellemy, S., Desplat-Jego, S., Marin, V., Gambarelli, D., Bernard, D., Berthezene, P., Alescio-Lautier, B. & Verdier, J. M. (2001). Lithostathine and pancreatitis-associated protein are involved in the very early stages of Alzheimer's disease. Neurobiol Aging 22, 79-88.
33. Kay, L. E. (1995). Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63, 277-99.
34. Cornilescu, G., Delaglio, F. & Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13, 289-302.
35. Herrmann, T., Guntert, P. & Wuthrich, K. (2002). Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319, 209-27.
36. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477-86.
37. Nordstedt, C., Naslund, J., Tjernberg, L. O., Karlstrom, A. R., Thyberg, J. & Terenius, L. (1994). The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem 269, 30773-6.
38. Klunk, W. E., Jacob, R. F. & Mason, R. P. (1999). Quantifying amyloid by congo red spectral shift assay. Methods Enzymol 309, 285-305.
39. Vuilleumier, S., Sancho, J., Loewenthal, R. & Fersht, A. R. (1993). Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains. Biochemistry 32, 10303-13.
40. Sreerama, N. & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287, 252-60.
41. Wang, L., Lashuel, H. A., Walz, T. & Colon, W. (2002). Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proc Natl Acad Sci U S A 99, 15947-52.
42. Ho, M. R., Lou, Y. C., Lin, W. C., Lyu, P. C. & Chen, C. (2004). (1)H, (13)C, and (15)N resonance assignments and secondary structure of human pancreatitis-associated protein (hPAP). J Biomol NMR 30, 381-2.
43. Thirumalai, D., Klimov, D. K. & Dima, R. I. (2003). Emerging ideas on the molecular basis of protein and peptide aggregation. Curr Opin Struct Biol 13, 146-59.
44. Elam, J. S., Taylor, A. B., Strange, R., Antonyuk, S., Doucette, P. A., Rodriguez, J. A., Hasnain, S. S., Hayward, L. J., Valentine, J. S., Yeates, T. O. & Hart, P. J. (2003). Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Biol 10, 461-7.
45. Eneqvist, T., Andersson, K., Olofsson, A., Lundgren, E. & Sauer-Eriksson, A. E. (2000). The beta-slip: a novel concept in transthyretin amyloidosis. Mol Cell 6, 1207-18.
46. Gregoire, C., Marco, S., Thimonier, J., Duplan, L., Laurine, E., Chauvin, J. P., Michel, B., Peyrot, V. & Verdier, J. M. (2001). Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease. Embo J 20, 3313-21.
47. Laurine, E., Gregoire, C., Fandrich, M., Engemann, S., Marchal, S., Thion, L., Mohr, M., Monsarrat, B., Michel, B., Dobson, C. M., Wanker, E., Erard, M. & Verdier, J. M. (2003). Lithostathine quadruple-helical filaments form proteinase K-resistant deposits in Creutzfeldt-Jakob disease. J Biol Chem 278, 51770-8.
48. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M. & Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8, 316-20.
49. Staniforth, R. A., Giannini, S., Higgins, L. D., Conroy, M. J., Hounslow, A. M., Jerala, R., Craven, C. J. & Waltho, J. P. (2001). Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. Embo J 20, 4774-81.
50. Sambashivan, S., Liu, Y., Sawaya, M. R., Gingery, M. & Eisenberg, D. (2005). Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266-9.
51. Bousset, L., Thomson, N. H., Radford, S. E. & Melki, R. (2002). The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. Embo J 21, 2903-11.
52. Kajava, A. V., Baxa, U., Wickner, R. B. & Steven, A. C. (2004). A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci U S A 101, 7885-90.
53. Makin, O. S., Atkins, E., Sikorski, P., Johansson, J. & Serpell, L. C. (2005). Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102, 315-20.
54. Fowler, S. B., Poon, S., Muff, R., Chiti, F., Dobson, C. M. & Zurdo, J. (2005). Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc Natl Acad Sci U S A 102, 10105-10.
55. Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H. & Goto, Y. (2002). Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 9, 332-6.
56. Ippel, J. H., Olofsson, A., Schleucher, J., Lundgren, E. & Wijmenga, S. S. (2002). Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc Natl Acad Sci U S A 99, 8648-53.
57. Olofsson, A., Ippel, J. H., Wijmenga, S. S., Lundgren, E. & Ohman, A. (2004). Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy. J Biol Chem 279, 5699-707.
58. Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D. & Riek, R. (2005). 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 102, 17342-7.
59. Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X. M., Jaeger, H. & Lindquist, S. L. (2003). Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100, 4527-32.
60. Waterhouse, S. H. & Gerrard, J. A. (2004). Amyloid fibrils in bionanotechnology. Current Chemistry 57, 519-23.
61. Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y. & Okamoto, H. (1988). A novel gene activated in regenerating islets. J Biol Chem 263, 2111-4.
62. Zhang, Y. W., Ding, L. S. & Lai, M. D. (2003). Reg gene family and human diseases. World J Gastroenterol 9, 2635-41.
63. Cerini, C., Peyrot, V., Garnier, C., Duplan, L., Veesler, S., Le Caer, J. P., Bernard, J. P., Bouteille, H., Michel, R., Vazi, A., Dupuy, P., Michel, B., Berland, Y. & Verdier, J. M. (1999). Biophysical characterization of lithostathine. Evidences for a polymeric structure at physiological pH and a proteolysis mechanism leading to the formation of fibrils. J Biol Chem 274, 22266-74.
64. Ho, M. R., Lou, Y. C., Lin, W. C., Lyu, P. C., Huang, W. N. & Chen, C. (2006). Human pancreatitis-associated protein forms fibrillar aggregates with a native-like conformation. J Biol Chem 281, 33566-76.
65. Hartupee, J. C., Zhang, H., Bonaldo, M. F., Soares, M. B. & Dieckgraefe, B. K. (2001). Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: Reg IV. Biochim Biophys Acta 1518, 287-93.
66. Oue, N., Mitani, Y., Aung, P. P., Sakakura, C., Takeshima, Y., Kaneko, M., Noguchi, T., Nakayama, H. & Yasui, W. (2005). Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. J Pathol 207, 185-98.
67. Kochi, M., Fujii, M., Kanamori, N., Kaiga, T., Kawakami, T., Aizaki, K., Kasahara, M., Mochizuki, F., Kasakura, Y. & Yamagata, M. (2000). Evaluation of serum CEA and CA19-9 levels as prognostic factors in patients with gastric cancer. Gastric Cancer 3, 177-186.
68. Mitani, Y., Oue, N., Matsumura, S., Yoshida, K., Noguchi, T., Ito, M., Tanaka, S., Kuniyasu, H., Kamata, N. & Yasui, W. (2007). Reg IV is a serum biomarker for gastric cancer patients and predicts response to 5-fluorouracil-based chemotherapy. Oncogene 26, 4383-93.
69. Bishnupuri, K. S., Luo, Q., Murmu, N., Houchen, C. W., Anant, S. & Dieckgraefe, B. K. (2006). Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology 130, 137-49.
70. Crouch, E., Hartshorn, K. & Ofek, I. (2000). Collectins and pulmonary innate immunity. Immunol Rev 173, 52-65.
71. Vestweber, D. & Blanks, J. E. (1999). Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev 79, 181-213.
72. Drickamer, K. (1999). C-type lectin-like domains. Curr Opin Struct Biol 9, 585-90.
73. Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263, 9557-60.
74. Weis, W. I., Crichlow, G. V., Murthy, H. M., Hendrickson, W. A. & Drickamer, K. (1991). Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J Biol Chem 266, 20678-86.
75. Chatwell, L., Holla, A., Kaufer, B. B. & Skerra, A. (2008). The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45, 1981-94.
76. Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I. (2001). Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163-6.
77. Holm, L. & Sander, C. (1995). Dali: a network tool for protein structure comparison. Trends Biochem Sci 20, 478-80.
78. Drickamer, K. (1992). Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360, 183-6.
79. Holmskov, U., Fischer, P. B., Rothmann, A. & Hojrup, P. (1996). Affinity and kinetic analysis of the bovine plasma C-type lectin collectin-43 (CL-43) interacting with mannan. FEBS Lett 393, 314-6.
80. Bax, A., Vuister, G. W., Grzesiek, S., Delaglio, F., Wang, A. C., Tschudin, R. & Zhu, G. (1994). Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239, 79-105.
81. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. & Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-93.
82. Johnson, B. A. & Blevins, R. A. (1994). NMR View: A computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR Volumn 4, 603-614.
83. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. (2003). The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160, 65-73.
84. Koradi, R., Billeter, M. & Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51-5, 29-32.
85. DeLano, W. L. (2002). The PyMOL Molecular Graphics System. on the World Wide Web http://www.pymol.org.
86. Walker, J. R., Nagar, B., Young, N. M., Hirama, T. & Rini, J. M. (2004). X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry 43, 3783-92.
87. Sugawara, H., Kusunoki, M., Kurisu, G., Fujimoto, T., Aoyagi, H. & Hatakeyama, T. (2004). Characteristic recognition of N-acetylgalactosamine by an invertebrate C-type Lectin, CEL-I, revealed by X-ray crystallographic analysis. J Biol Chem 279, 45219-25.
88. Swaminathan, G. J., Myszka, D. G., Katsamba, P. S., Ohnuki, L. E., Gleich, G. J. & Acharya, K. R. (2005). Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44, 14152-8.
89. Cash, H. L., Whitham, C. V. & Hooper, L. V. (2006). Refolding, purification, and characterization of human and murine RegIII proteins expressed in Escherichia coli. Protein Expr Purif 48, 151-9.
90. Zelensky, A. N. & Gready, J. E. (2005). The C-type lectin-like domain superfamily. FEBS J 272, 6179-217.
91. Nishimiya, Y., Kondo, H., Takamichi, M., Sugimoto, H., Suzuki, M., Miura, A. & Tsuda, S. (2008). Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 382, 734-46.
92. Zenilman, M. E., Chen, J., Danesh, B. & Zheng, Q. H. (1998). Characteristics of rat pancreatic regenerating protein. Surgery 124, 855-63.
93. Bush, C. A., Martin-Pastor, M. & Imberty, A. (1999). Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Annu Rev Biophys Biomol Struct 28, 269-93.
94. Weis, W. I. & Drickamer, K. (1996). Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65, 441-73.
95. Elgavish, S. & Shaanan, B. (1997). Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci 22, 462-7.
96. Tizard, I. R., Carpenter, R. H., McAnalley, B. H. & Kemp, M. C. (1989). The biological activities of mannans and related complex carbohydrates. Mol Biother 1, 290-6.
97. Ezekowitz, R. A. (2003). Role of the mannose-binding lectin in innate immunity. J Infect Dis 187 Suppl 2, S335-9.
98. Nakagawa, T., Ma, B. Y., Uemura, K., Oka, S., Kawasaki, N. & Kawasaki, T. (2003). Role of mannan-binding protein, MBP, in innate immunity. Anticancer Res 23, 4467-71.
99. van Langevelde, P., van Dissel, J. T., Ravensbergen, E., Appelmelk, B. J., Schrijver, I. A. & Groeneveld, P. H. (1998). Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities. Antimicrob Agents Chemother 42, 3073-8.
100. Baccarelli, A., Hou, L., Chen, J., Lissowska, J., El-Omar, E. M., Grillo, P., Giacomini, S. M., Yaeger, M., Bernig, T., Zatonski, W., Fraumeni, J. F., Jr., Chanock, S. J. & Chow, W. H. (2006). Mannose-binding lectin-2 genetic variation and stomach cancer risk. Int J Cancer 119, 1970-5.
101. Scudiero, O., Nardone, G., Omodei, D., Tatangelo, F., Vitale, D. F., Salvatore, F. & Castaldo, G. (2006). A mannose-binding lectin-defective haplotype is a risk factor for gastric cancer. Clin Chem 52, 1625-7.
102. Yoshino, N., Ishihara, S., Rumi, M. A., Ortega-Cava, C. F., Yuki, T., Kazumori, H., Takazawa, S., Okamoto, H., Kadowaki, Y. & Kinoshita, Y. (2005). Interleukin-8 regulates expression of Reg protein in Helicobacter pylori-infected gastric mucosa. Am J Gastroenterol 100, 2157-66.
103. Smorenburg, S. M. & Van Noorden, C. J. (2001). The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol Rev 53, 93-105.
104. Thompson, S. A., Higashiyama, S., Wood, K., Pollitt, N. S., Damm, D., McEnroe, G., Garrick, B., Ashton, N., Lau, K., Hancock, N. & et al. (1994). Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem 269, 2541-9.
105. Schlessinger, J., Lax, I. & Lemmon, M. (1995). Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83, 357-60.
106. Colin, S., Jeanny, J. C., Mascarelli, F., Vienet, R., Al-Mahmood, S., Courtois, Y. & Labarre, J. (1999). In vivo involvement of heparan sulfate proteoglycan in the bioavailability, internalization, and catabolism of exogenous basic fibroblast growth factor. Mol Pharmacol 55, 74-82.
107. Kinoshita, Y., Ishihara, S., Kadowaki, Y., Fukui, H. & Chiba, T. (2004). Reg protein is a unique growth factor of gastric mucosal cells. J Gastroenterol 39, 507-13.
108. Kobayashi, S., Akiyama, T., Nata, K., Abe, M., Tajima, M., Shervani, N. J., Unno, M., Matsuno, S., Sasaki, H., Takasawa, S. & Okamoto, H. (2000). Identification of a receptor for reg (regenerating gene) protein, a pancreatic beta-cell regeneration factor. J Biol Chem 275, 10723-6.