簡易檢索 / 詳目顯示

研究生: 黃士軒
Huang, Shih Hsuan
論文名稱: 利用光誘導細胞裂解法於微流體平台進行連續式細胞核萃取之應用
Nucleus Extraction from Cells by Performing Optically-Induced Cell Lysis on a Continuous-flow Platform
指導教授: 李國賓
Lee, Gwo Bin
口試委員: 林彥亨
Lin, Yen Heng
林哲信
Lin, Che Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 114
中文關鍵詞: 細胞裂解光誘導電細胞裂解細胞核萃取微流體
外文關鍵詞: Cell Lysis, Optically-Induced Cell Lysis, Nucleus Extraction, Microfluidic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究提供一種創新的微流體技術應用到連續式平台進行細胞核萃取。先前研究所提出的微流體細胞裂解法主要可分為幾類:加熱、電、化學、聲波、光學以及機械微結構法,這些方法可以被應用到後端的化學處理與細胞內物質之分析。相較於其他裂解方式,創新的光誘導細胞裂解平台提供更具精確性、選擇性、甚至更有效率。更重要的是,只要可以精確地控制光誘導法的條件與參數,達到僅裂解細胞膜但可留下完整細胞核之成果。為了可以將光誘導裂解法應用到連續式細胞萃取,我們更進一步整合光介電泳到我們的微流體系統。此創新整合型微流體系統解決許多傳統細胞核萃取常會遇到的問題,包含:無法快速萃取完整的細胞核以及需要專業人員的技術操作。因此,我們的新的微流控系統提供了有效的方法,自動化四個步驟包含:集中並傳輸人類胚胎腎臟細胞(human embryonic kidney 293T)、進行細胞膜的光誘導裂解並釋放出細胞核,緊接著利用光介電泳分離細胞核,並萃取細胞核於最後端的收集槽。而此系統平均每秒可以同時對1顆細胞進行細胞核萃取。為了證明整合式微流體系統的所有功能,我們利用綠色螢光(SYTO Green) 標定細胞核,紅色螢光(CellMask Deep Red Plasma Membrane) 標定細胞膜以利於觀察細胞。本研究藉由觀察螢光訊號來證明整合式系統的可行性,結果顯示紅色螢光不見而綠色螢光維持存在,表示細胞膜裂解但細胞核沒被破壞,而量化後的光誘導細胞膜裂解效率以及細胞核分離效率分別為78.04 ± 5.70 % 和80.90 ± 5.98 %。因此,可以得到細胞核萃取效率為58.21 ± 2.21 % 。不僅如此,我們也成功將流體操控模組整合到整個系統,希望本系統可以控制精確的定量的細胞進行細胞核萃取,以利於化學處理和疾病檢測以及分析之應用。


    Abstract
    This study presents an innovative microfluidics-based approach for nucleus extraction and collection in a continuous format. Previously proposed micro-devices for cell lysis can be classified into several types, including thermal, electrical, chemical, acoustic, optical, and mechanical approaches, and can be combined with subsequent chemical treatments and analysis of extracted intracellular components. Comparing with previous micro-devices, a novel optically-induced cell lysis (OICL) device proposed in this study shows the advantages with significant flexibility, selectivity and efficiency. More importantly, once can precisely control the operating conditions of this new device to lyse cell membranes without disrupting nucleus. To facilitate this OICL module for continuous nucleus extraction, we further integrate an optically-induced dielectrophoresis (ODEP) module with OICL device into a microfluidic system. This novel approach avoids critical issues such as difficulty to extract intact nucleus rapidly and the requirement of professional skills to operate the traditional equipments, which are posed as common disadvantages to the traditional nucleus extraction approaches. Our new microfluidic system therefore provides a powerful method for automating four steps, including automatically focusing and transporting human embryonic kidney 293T cells, releasing the nucleus on the OICL module, nucleus isolation on the ODEP module and finally nucleus collection in the outlet chamber. The average throughput of nucleus extraction and collection was measured to be 1 cells/s. In order to prove the full function of this integrated microfluidic system, the nucleus was stained with green fluorescence dye (SYTO Green) and plasma membrane was stained with red fluorescence dye (CellMask Deep Red Plasma Membrane) for cell observation. The feasibility of this integrated system was demonstrated by observing fluorescent results showing no red fluorescence and maintenance of green fluorescence, indicating cell membrane lysis without disruption of the nucleus. The cell membrane lysis rate and ODEP nucleus separation rate were measured to be 78.04 ± 5.70 % and 80.90 ± 5.98 %, respectively. Therefore, the overall efficiency of nucleus extraction rate can be quantifiably up to 58.21 ± 2.21%. Furthermore, a flow control module was successfully integrated with whole micro-system, suggesting that the developed system is capable of transportation metered cells, releasing nucleus, and isolation of extracted nucleus for subsequent chemical treatments, applications and specific analysis of diseases.

    Table of contents Abstract……………………………………………………………..……I 摘要……………………………………………………………………..III 誌謝……………………………………………………………………..Ⅴ Table of Contents……………………………………………………ⅤII List of Tables………………………………………………………..… XI List of Figures………………………………………………………XII Abbreviations…………………………………………………...…..XXV Nomenclature……………………………………………………..XXVII Chapter 1 Introduction………….…………………………….……….1 1.1 MEMS and microfluidic technology…………………………….…………1 1.2 Background and literature survey……………………………………..…...2 1.2.1 Cell1ysis…………...…….……………………………………...…..…2 1.2.2 Amorphous silicon as a photoconductive material…………….………4 1.2.3 Optically-induced electric field for cell lysis………..……...…...….…5 1.2.4 Optically-induced dielectrophoresis for particle manipulation…...…...8 1.2.5 Nucleus extraction and microfluidic device………………………….12 1.3 Motivation and objectives…………… …………………….…….18 1.4 The structure of this thesis……………..………………………….………19 Chapter 2 Materials and methods………………..…………………...22 2.1 Experimental procedure and working principle of the OICL chip…...…....22 2.1.1 Chip integration: flow control module, OICL module and ODEP module for extraction nucleus…………………………………………….…..24 2.1.2 Working principle of suction-type micro-pump in the flow control…29 2.1.3 Working principle of OICL module for cell membrane lysis………...31 2.1.4 Working principle of ODEP module for nucleus separation……...….35 2.2 Fabrication process………………………………..…………………….…41 2.2.1 Formation of suction-type micropump………..……………………...41 2.2.2 PDMS casting and microfluidic chip bonding…………………….…41 2.2.3 Formation of microchannel from double-side tape……….………….43 2.2.4 Formation of OICL chip and integration with suction-type micropump……………………………………………………………44 2.3 Sample preparation…………………………………...……………………48 2.4 The experimental setup………………………..………………………..…48 Chapter 3 Results and discussion …..……………………….……….51 3.1 Characterization of the suction-type micropump……………..…………...51 3.2 Integrated OICL and ODEP into the microfluidic chip……….……..…….58 3.2.1 Cell membrane lysis without disruption of the nucleus by optically-induced electric field from single-spot light in static………58 3.2.2 Nucleus separation by optically-induced dielectrophoresis (ODEP)… 60 3.3 Integration of OICL, ODEP and the suction-type micro-pump into the microfluidic chip…………………...………………………………...……63 3.3.1 Cell membrane lysis efficiency by OICL…………….………………63 3.3.2 Nucleus extraction efficiency by ODEP………..…………………….65 3.3.3 Nucleus extraction efficiency………………………………………..66 Chapter 4 Conclusions and future Work……………………..………75 4.1 Conclusions………………………………………………………………..75 4.2 Future Perspectives …………………………………………………….….76 References………………………………………………………………78 Publication list………………………………………………………….84

    References
    1. A.C.R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flymn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,“ Proceedings of the IEEE, 2004, 92(1): pp. 16-21.
    2. A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, 1990, 1(1-6): pp. 244-248.
    3. L. Gervais and E. Delamarche, “Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates,” Lab on a Chip, 2009, 9(23): pp. 3330-3337.
    4. D. R. Reyes, D. Iossifidis, P. A. Auroux and A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Analytical Chemistry, 2002, 74(12): pp. 2623-2636.
    5. P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Analytical Chemistry, 2002, 74(12): pp. 2637-2652.
    6. L. Chen, N. Patrone and J. F. Liang, “Peptide self-assembly on cell membranes to induce cell lysis,” Biomacromolecules, 2012, 13(10): pp. 3327-3333.
    7. L. A. Marshall, L. L. Wu, S. Babikian, M. Bachman and J. G. Santiago, “Integrated printed circuit board device for cell lysis and nucleic acid extraction,” Analytical Chemistry, 2012, 84(21): pp. 9640-9645.
    8. R.Z. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annual Review of Biomedical Engineering, 2010, 12: pp. 187–201.
    9. Y. H. Lin and G. B. Lee, “An integrated cell counting and continuous cell lysis device using an optically induced electric field,” Sensors and Actuators B: Chemical, 2010, 145(2): pp. 854-860.
    10. H. Lu, and M. A. Schmidt and K. F. Jensen, “A microfluidic electroporation device for cell lysis,” Lab on a Chip, 2004, 5(1): pp. 23-29.
    11. X. Chen, D. Cui, H. Cai, H. Li, J. Sun and L. Zhang, “MEMS-based microdevice for cell lysis and DNA extraction,” Microelectromechanical Systems and Devices, 2012 ,pp. 23-39.
    12. J. Kim, M. Johnson, P. Hill and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” I Integrative Biology, 2009, 1(10): pp. 574-586.
    13. R. Brown, and J. Audet, “Current techniques for single-cell lysis,” Journal of the Royal Society Interface, 2008, 5(2): pp. 131-138.
    14. C. Witte, C. Kremer, J. M. Cooper and S. L. Neale, “Continuous cell lysis in microfluidics through acoustic and optoelectronic tweezers,” Proceedings of SPIE, 2014, doi: 10.1117/12.2004814.
    15. R. Schwarz, F. Wang and M. Ressner, “Fermi-level dependence of theambipolar diffusion length in amorphous-silicon thin-film transistors,” Applied Physics Letters, 1993, 63(8): pp. 1083-1085.
    16. M. J. Madou, “Fundamentals of microfabrication,” New York: CRC Press, 1997.
    17. L. Nan, Z. Jiang and X. Wei, “Emerging microfluidic devices for cell lysis: a review,” Lab on a Chip, 2014, 14(6): pp. 1060-1073.
    18. T. Geng, N. Bao, N. Sriranganathanw, L. Li and C. Lu, “Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform,” Analytical Chemistry, 2012 84(21): pp. 9632-9639.
    19. C. Kremer, C. Witte, S. L. Neale, J. Reboud, M. P. Barrett and J. M. Cooper, “Shape-dependent optoelectronic cell lysis,” Angewandte Chemie, 2014, 53(3): pp. 842-846.
    20. Y. H. Lin and G. B. Lee, “An optically induced cell lysis device using dielectrophoresis,” Applied Physics Letters, 2009, pp. 033901.
    21. J. Fulka, P. Loi, H. Fulka, G. Ptak, T. Nagai, “Nucleus transfer in mammals: noninvasive approaches for the preparation of cytoplasts,” Trends in Biotechnology, 2004, 22(6): pp. 279-283.
    22. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, 1970, 24(4): pp. 156-159.
    23. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, 1986, 11(5): pp. 288-290.
    24. P. Y. Chiou, A. T. Ohta and M. C. Wu “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, 2005, 436(7049): pp. 370-372.
    25. W. Y. Lin, Y. H. Lin and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, 2009, 8(2): pp. 217-229.
    26. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A: Physical, 2003, 104(3): pp. 222-228.
    27. S. B. Hung, M. H. Wu, C. H. Hsieh, H. C. Lin, C. P. Tseng and G. B. Lee, “High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced- dielectrophoretic (ODEP) force,” Lab on a Chip, 2013, 13(7): p. 137-183.
    28. Y. H. Lee, C. H. Wang and G. B. Lee, “Different optical images for optically-induced electroporation of multiple gene transfection,” Micro Electro Mechanical Systems (MEMS), 2013, pp. 907-910.
    29. T. Liehr, C. Uwe and G. Erich, “Nucleus extraction from single mounted tissue sections,” Genetic Analysis., 1999, 15(2): pp. 65-69.
    30. V. Bordiqnon and L. C. Smith, “Telophase enucleation: an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer,” Molecular Reproduction and Development, 1998, 49(1): pp. 29-36.
    31. Q. Zhao, M. Cui, C. Zhang, J. Yu, M. Sun and X. Zhao, “Robotic enuleation for oocytes,” Proceedings of IEEE Nano/Micro Engineered and Molecular Systems (NEMS), 2014, pp. 23-27.
    32. L. Feng, M. Hagiwara, A. Ichikawa and F. Arai, “On-chip enucleation of bovine oocytes using microrobot-Assisted flow-speed control,” Micromachines, 2013, (2): pp. 272-285.
    33. H. L. Wang, Z. L. Chang, K. L. Li, H. Y. Lian, D. Han, W. Cui, G. Z. Jiao, Y. G. Wu, M. J. Luo, and J. H. Tan,” Caffeine can be used for oocyte enucleation,” Cellular reprogramming, 2011, 13(3): pp. 225-232.
    34. S.M. Hosseinia, M. Hajiana, M. Forouzanfara, S. Ostadhosseinia, F. Moulavia, H.R. Ghanaeia, H. Gourbaib, A.H. Shahverdic, A.D. Vosougha, M.H. Nasr-Esfahania,” Chemically assisted somatic cell nuclear transfer withoutmicromanipulator in the goat: effects of demecolcine, cytochalasin-B, and MG-132 on the efficiency of a manualmethod of oocyte enucleation using a pulled Pasteur pipette,” Animal Reproduction Science, 2015, 15: pp.11-18.
    35. Y. Yamanish, S. Sakuma, T. Iyanagi, F. Arai, T. Arai, A. Hasegawa, T. Tanikawa, A. Ichikawa, O. Satoh, A. Nakayama, H. Aso, M. Goto, S. Takahashi and K. Matsukawa, “Design and fabrication of all-in-one unified microfluidic chip for automation of embryonic cell manipulation,” Journal of Robotics and Mechatronics, 2010, 22(3): pp. 371-379.
    36. M. Hagiwara, T. Kawahara, L. Feng, Y. Yamanishi and F. Arai, “On-chip dual-arm microrobot driven by permanent magnets for high speed cell enucleation,” Micro Electro Mechanical Systems (MEMS), 2011, pp. 189-192.
    37. F. Arai, N. Inomata, S. Kudo, Y. Yamanishi, T. Mizunuma,” Omni-directional actuation of magnetically driven microtool for enucleation of oocyte,” Micro Electro Mechanical Systems (MEMS), 2010, pp. 1167.
    38. A. Ichikawa, S. Sakuma, F. Arai, and S. Akagi,” Untethered micro-robot with gripping mechanism for on-chip cell surgery utilizing outer magnetic force,” Proceedings of IEEE Robotics and Automation (ICRA), 2014, pp. 3795-3800.
    39. C. H. Weng, K.Y. Lien, S. Y. Yang, G. B. Lee, “A suction-type, pneumatic microfluidic device for liquid transport and mixing,” Microfluidics and Nanofluidics, 2011, 10(2): pp. 301-310.
    40. W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, Mel S. Lee and G. B. Lee,” Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system,” Lab on a Chip, 2014, 14(17): pp. 3376-3384.
    41. S. W. Lee, Y. C. Tai,” A micro cell lysis device,” Sensors and Actuators A: Physical, 1999, 73(1–2): pp. 74–79.
    42. L. H. He, C. W. Lim, B.S. Wu,” A continuum model for size-dependent deformation of elastic films of nano-scale thickness,” International Journal of Solids and Structures, 2004, 41(3–4): pp. 847–857.
    43. H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, 2010, 10(2): pp. 165-172.
    44. T. Grahl and H. Markl, “Killing of microorganisms by pulsed electric fields,” Applied Microbiology and Biotechnology, 1996, 45(1-2): pp. 148-157.
    45. T. Y. Tsong, E. Neumann, A. E. Sowers, C. A. Jordan, ”Electroporation and Electrofusion in Cell Biology, Chap. 9,” Plenum, New York, 1989, pp. 149-163.
    46. G. W. Bates, D. C. Chang, B. M. Chassy, J. A. Saunders and A. E. Sowers, “Guide to Electroporation and Electrofusion, Chap. 16,” Academy Press, New York, 1989, pp. 249-264.
    47. G. W. Bates, D. C. Chang, B. M. Chassy, J. A. Saunders and A. E. Sowers, “Guide to Electroporation and Electrofusion, Chap. 8,” Academy Press, New York, 1989, pp. 119-138.
    48. W. Choi, S. H. Kim, J. Jang and J. K. Park, “Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD),” Microfluidics and Nanofluidics, 2007, 3(2): pp. 217-225.
    49. H.A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” Journal of Applied Physics, 1951, 22(7): pp. 869-871.
    50. T. B. Jones, ”Electromechanics of particles.” New York: Cambridge University Press, 1995.
    51. X. B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne, “A unified theory of dielectrophoresis I and travelling wave dielectrophoresis,” Journal of Physics D: Applied Physics, 1994, 27(7): pp. 1571-1574.
    52. X. B. Wang, Y. Huang, J. P. H. Burt G. H. Markx and R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential energy wells,” Journal of Physics D: Applied Physics, 1993, 26(8): pp. 1278-1285.
    53. Y. Huang , R. Holzel, R. Pething and X. B Wang, “Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electroporation studies,” Physics in Medicine and Biology, 1992, 37(7): pp. 1499-1517.
    54. C. H. Kua, Y. C. Lam, C. Yang and K. Youcef-Toumi, “Review of bio-particle manipulation using dielectrophoresis,” Innovation in Manufacturing Systems and Technology, 2005, pp. 1–7.
    55. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hus, A. Jamshidi and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): pp. 235-243.
    56. A. Khosla,” Nanoparticle-doped Electrically-conducting. Polymers for Flexible Nano-Micro Systems,” The Electrochemical Society Interface, 2012, pp. 67-70.
    57. S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong and S. H. Lee,” Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomedical Engineering Letters, 2011, 1(3): pp. 199-203.
    58. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay,” Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of Microelectromechanical Systems, 2005, 14(3): pp. 590 – 597.
    59. K. Svoboda and S. M. Block,” Biological applications of optical forces,” Annual Review of Biophysics and Biomolecular Structure, 1994, 23: pp.247–285.
    60. J. Happel and H. Brenner,” Low Reynolds Number Hydrodynamics,” Kluwer Academic, 1991, Chap 7: pp. 322.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE