研究生: |
吳祐豪 Wu, Yu-Hao |
---|---|
論文名稱: |
X光激發放光光譜與時間解析X光激發放光光譜觀測氧化鋅與氮化鎵磊晶結構之異常放光現象之研究 Anomalous emission of ZnO and GaN epitaxial structures studied by XEOL and TR-XEOL at TPS X-ray nanoprobe. |
指導教授: |
李志浩
Lee, Chih-Hao 湯茂竹 Tang, Mau-Tsu |
口試委員: |
林碧軒
Lin, Bi-Hsuan 曾紹欽 Tseng, Shao-Chin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | X光激發放光 、時間解析X光激發放光 、吸收光譜 、光致放光 、氧化鋅 、氮化鎵 |
外文關鍵詞: | XEOL, TR-XEOL, XAS, PL, ZnO, GaN |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們在台灣光子源 (Taiwan Photon Source,TPS) 之X-光奈米探測 (X-ray Nanoprobe, XNP) 光束線,量測極化 (polar) 和非極化 (non-polar) 氧化鋅 ( ZnO)以及氮化鎵 (GaN) 之X光激發放光光譜 (X-ray excited optical luminescence, XEOL)和時間解析X光激發放光光譜 (time-resolved X-ray excited optical luminescence, TR-XEOL),並觀察其特殊放光行為。我們發現,在X光奈米聚焦的照射下,近帶邊緣 (near band edge, NEB) 的放光強度會快速的增強,同時,也發現氮化鎵參雜鎂 (magnesium) 元素後與氧化鎂鋅(MgZnO)在波長325 nm處有特殊放光現象,但此現象在光致發光光譜 (photoluminescence, PL) 量測並沒有被發現。我們推論奈米聚焦的X光可以改善晶體品質,從而提高近帶邊緣的放光強度。此外,我們研究了氧化鎂鋅磊晶薄膜(MgZnO epi-film) c-plane和a-plane的光學特性,並根據不同偏振性 (E⊥c和E∥c) 的X光吸收光譜 (X-ray absorption spectroscopy, XAS) 量測聚焦X光對於晶體結構與原子價電態之影響。我們並藉由台灣光子源的同步輻射加速器的混合運轉模式 (hybrid bunch mode) 進行了時間解析X光激發放光光譜分析,詳細記錄氧化鋅與氮化鎵完整的放光過程,並據以解釋此現象的物理機制。
The X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) at 23A X-ray Nanorpobe (XNP) beamline of the Taiwan Photon Source (TPS) were applied to investigate the emission properties of the non-polar and ZnO and GaN epi-films. We found that the emission luminescence of the near-band-edge (NBE) was dramatically enhanced with focused X-ray irradiation time. We also found that the peculiar emission at 325 nm after doping Magnesium element, which was not observed before PL measurement. We attribute to the improved crystal quality been under focused X-ray illumination resulting to enhancement of emission. Furthermore, we studied the optical properties of c-plane and a-plane MgZnO epi-film. According to the crystallographic orientations of E⊥c and E∥c was observed with X-ray absorption spectroscopy (XAS) to observe the effect of crystal structure and valance electron by focused X-ray. The hybrid bunch operational mode of TPS storage ring provides the pulse width of time scale of 30 ps to 310 ns, with which the dynamics of luminescence, namely TR-XEOL is recorded in detailed by a streak camera. Interpretations based on experimental results is provided to explain the physical mechanism under the phenomena.
References
1. Zinc oxide bulk, thin films and nanostructures,c. Jagadish and s.Pearton(editors),© 2006 elsevier limited. All rights reserved.
2. P. Rodnyi, and I. Khodyuk, Optics and Spectroscopy 111, 776-785 (2011).
3. K. Liu, M. Sakurai, and M. Aono, Sensors 10, 8604-8634 (2010).
4. J.-W. Kang, B.-H. Kim, H. Song, Y.-R. Jo, S.-H. Hong, G. Y. Jung, B.-J. Kim, S.-J. Park, and C.-H. Cho, Nanoscale 10, 14812-14818 (2018).
5. J. H. Lim, S. M. Lee, H.-S. Kim, H. Y. Kim, J. Park, S.-B. Jung, G. C. Park, J. Kim, and J. Joo, Scientific reports 7, 41992 (2017).
6. B.-H. Lin, X.-Y. Li, D.-J. Lin, B.-L. Jian, H.-C. Hsu, H.-Y. Chen, S.-C. Tseng, C.-Y. Lee, B.-Y. Chen, and G.-C. J. S. r. Yin, Scientific reports 9, 1-8 (2019).
7. G. Martínez‐Criado, J. Segura‐Ruiz, B. Alén, J. Eymery, A. Rogalev, R. Tucoulou, and A. J. A. M. Homs, Advanced Materials 26, 7873-7879 (2014).
8. J. Tringe, H. Levie, B. El-Dasher, R. Swift, and M. J. A. P. L. Wall, Applied Physics Letters 98, 241907 (2011).
9. X. Wang, C. Xu, F. Qin, Y. Liu, A. Manohari, D. You, W. Liu, F. Chen, Z. Shi, and Q. Cui, Nanoscale 10, 17852-17857 (2018).
10. Z. Wang, X. Guo, and T.-K. Sham, Nanoscale 6, 6531-6536 (2014).
11. A. Abiyasa, S. Yu, S. Lau, E. S. Leong, and H. Yang, Applied physics letters 90, 231106 (2007).
12. E. Guidelli, O. Baffa, and D. Clarke, Scientific reports 5, 1-11 (2015).
13. D. İskenderoğlu, A. E. Kasapoğlu, and E. Gür, Materials Research Express 6, 036402 (2018).
14. H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. J. N. l. Heinz, Nano letters 15, 2992-2997 (2015).
15. L. Reeves, Y. Wang, and T. F. Krauss, Advanced Optical Materials 6, 1800272 (2018).
16. S. Susarla, A. Kutana, J. A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J. C. Idrobo, B. I. Yakobson, C. S. Tiwary, and P. M. Ajayan, Advanced Materials 29, 1702457 (2017).
17. T. K. J. A. M. Sham, Advanced Materials 26, 7896-7901 (2014).
18. T. Sham, D. Jiang, I. Coulthard, J. Lorimer, X. Feng, K. Tan, S. Frigo, R. Rosenberg, D. Houghton, and B. Bryskiewicz, Nature 363, 331-334 (1993).
19. B.-H. Lin, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, S.-H. Chang, M.-T. Tang, and W.-F. Hsieh, Applied Physics Letters 109, 192104 (2016).
20. S. B. Singh, Y.-F. Wang, Y.-C. Shao, H.-Y. Lai, S.-H. Hsieh, M. V. Limaye, C.-H. Chuang, H.-C. Hsueh, H. Wang, and J.-W. Chiou, Nanoscale 6, 9166-9176 (2014).
21. L. Mino, E. Borfecchia, J. Segura-Ruiz, C. Giannini, G. Martinez-Criado, and C. J. R. o. M. P. Lamberti, Reviews of Modern Physics 90, 025007 (2018).
22. B.-H. Lin, S.-C. Tseng, X.-Y. Li, D.-J. Lin, H.-C. Hsu, Y.-T. Li, Y.-C. Chiu, C.-Y. Lee, B.-Y. Chen, and G.-C. Yin, Microscopy and Microanalysis 24, 198-199 (2018).
23. Hamamatsu photonics.
24. Q. Fan, G. V. Biesold‐McGee, J. Ma, Q. Xu, S. Pan, J. Peng, and Z. Lin, Angewandte Chemie International Edition 59, 1030-1046 (2020).
25. B. Wenger, P. K. Nayak, X. M. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Nat. Commun. 8, 10 (2017).
26. B.-H. Lin, Y.-C. Wu, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, X.-Y. Li, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, and S.-H. J. O. e. Chang, Optics express 26, 2731-2739 (2018).
27. B.-H. Lin, Y.-C. Wu, J.-F. Lee, M.-T. Tang, and W.-F. Hsieh, Applied Physics Letters 114, 091102 (2019).
28. B.-H. Lin, Y.-H. Wu, X.-Y. Li, H.-C. Hsu, Y.-C. Chiu, M.-T. Tang, and W.-F. J. J. o. S. R. Hsieh, Journal of Synchrotron Radiation 27 (2020).
29. G. E. Ice, J. D. Budai, and J. W. J. S. Pang, Science 334, 1234-1239 (2011).
30. 國家同步輻射研究中心簡介.
31. G.-C. Yin, S.-H. Chang, B.-Y. Chen, H.-Y. Chen, B.-H. Lin, S.-C. Tseng, C.-Y. Lee, J.-X. Wu, S.-Y. Wu, and M.-T. Tang, "X-ray nanoprobe project at taiwan photon source," in AIP Conference Proceedings(AIP Publishing LLC2016), p. 030004.
32. G.-C. Yin, S.-H. Chang, B.-Y. Chen, H.-Y. Chen, B.-H. Lin, S.-C. Tseng, C.-Y. Lee, S.-Y. Wu, and M.-T. Tang, "Multimodal hard x-ray nanoprobe facility by nested montel mirrors aimed for 40nm resolution at taiwan photon source," in AIP Conference Proceedings(AIP Publishing LLC2016), p. 020026.
33. Kimmon koha co., ltd.
34. Horiba.
35. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, Physical review letters 100, 157201 (2008).
36. B.-H. Lin, Y.-H. Wu, T.-S. Wu, Y.-C. Wu, X.-Y. Li, W.-R. Liu, M.-T. Tang, and W.-F. J. A. P. L. Hsieh, Applied Physics Letters 115, 171903 (2019).
37. W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang, and D. Shen, Applied surface science 255, 6745-6749 (2009).
38. X. Wei, R. Zhao, Y. Wang, L. Liu, and B. Cao, Surface engineering 28, 678-682 (2012).
39. B. Lin, W.-R. Liu, C. Lin, S. Hsu, S. Yang, C. Kuo, C.-H. Hsu, W. Hsieh, F.-S. Chien, and C. Chang, ACS Applied Materials & Interfaces 4, 5333-5337 (2012).