簡易檢索 / 詳目顯示

研究生: 陳志宇
Chin-Yu Chen
論文名稱: 光碟機無刷主軸馬達之變轉速控制器設計
Toward the Design of a Variable Speed Control for a Brushless Spindle Motor
指導教授: 陳建祥
Jian-Shiang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 光碟機無刷主軸馬達
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反覆式學習控制(Iterative Learning Control, ILC),是一經由反覆的控制系統過程中記錄系統所輸入、輸出的資訊,以作為下次控制力修正的參考,且反覆學習控制能達到在有限的學習次數中,將系統的跟隨誤差收斂到一有限的範圍內。但在學習過程中可能會受到外界干擾,導致學習效能不佳,因此利用小波轉換處理不可學習之動態。本文提出以小波轉換為基礎之無刷主軸馬達變轉速控制器,以解決傳統控制器難以處理的非線性以及不確定性的問題,使主軸馬達能追循命定軌跡的速度命令曲線。
    實驗硬體架構方面,本文以光碟機主軸馬達為驅動系統之控制對象。但原本馬達回授之轉速訊號解析度過低,因此需利用一數位位置轉換器,對回授之轉速訊號加以處理,以提升回授訊號之解析度,並將搭配以小波轉換為基礎之控制器,以及速度估測器,使光碟機主軸馬達能追尋速度命令曲線。


    The Iterative Learning Control (ILC) scheme is using the information in repetitive operation and progressive improving the tracking performance. The tracking error can be convergence to small range in a finite learning time. The performance of the iterative learning controller will be limited caused by non-repeatable disturbances. Thus wavelet transform was applied to handle the un-learnable dynamics. This thesis presents a wavelet-based controller on the brushless spindle velocity tracking. It can solve the nonlinear and uncertain problems that the traditional controller can not solve. Thus the spindle can track an arbitrary speed profile.
    About the hardware structure, the plant under study in the thesis is the spindle of an optical disk drive. Since the resolution of the speed signal from the spindle is too low, we choose a digital position converter (DPC) to improve the resolution. Thus that will enhance the performance of proposed controller.

    目 錄 中文摘要……………………………………………………………… I Abstract……………………………………………………………… II 目錄…………………………………………………………………… III 圖目錄………………………………………………………………… VI 表目錄……………………………………………………………………IX 第一章 緒論 1.1背景與研究動機 ……………………………………………………1 1.2文獻回顧 ……………………………………………………………2 1.3本文架構 ……………………………………………………………4 第二章 問題描述 2.1 光碟機主軸馬達與位置感測器……………………………………6 2.2 小波轉換理論………………………………………………………8 2.3 解角/數位轉換器…………………………………………………14 2.3.1 追蹤式解角/數位轉換器……………………………………15 2.3.2 直接式解角/數位轉換器……………………………………16 2.4 位置感測器非理想特性分析 ……………………………………16 2.5 振幅相位補償法 …………………………………………………18 2.6 誤差補償方法 ……………………………………………………19 2.7 反覆學習控制理論 ………………………………………………20 2.8 結合小波轉換之反覆學習控制律………………………………21 2.9 速度估測法………………………………………………………25 2.10 結語………………………………………………………………27 第三章 實驗系統架構 3.1實驗系統架構………………………………………………………28 3.2實驗設備介紹………………………………………………………32 3.2.1 個人電腦與8255介面卡………………………………………32 3.2.2 主軸馬達與驅動IC……………………………………………32 3.2.3 類比處理電路與類比數位轉換器……………………………33 3.2.4 複雜型可程式邏輯元件(CPLD)………………………………34 3.2.4 數位信號處理器(DSP)………………………… ……………34 3.2.6 實驗軟體簡介…………………………………………………35 第四章 實驗結果與討論 4.1 模擬結果 …………………………………………………………39 4.1.1 反覆學習控制…………………………………………………39 4.1.2 回授反覆學習控制……………………………………………40 4.2 實驗結果 …………………………………………………………43 4.2.1 轉速回授解析度探討…………………………………………43 4.2.2 反覆學習控制器參數 、 之選擇……………………………45 4.2.3 霍爾原件位置感測器的誤差討論……………………………50 4.2.4 基於小波轉換之反覆學習控制器(WILC-FB)實驗結果… 52 4.2.5 速度估測器(TLSF)搭配基於小波轉換之反覆學習控制器 (WILC-FB)實驗結果……………………………………………58 4.2.6 不同轉速誤差補償表之討論…………………………………63 4.2.7基於小波轉換反覆學習控制律之穩定度討論 ………………69 4.2.8更改速度命令曲線之討論 ……………………………………71 4.3 實驗結果討論 ……………………………………………………77 第五章 結論與未來研究發展之建議 5.1 本文貢獻 …………………………………………………………79 5.2 未來研究發展之建議 ……………………………………………80 參考文獻…………………………………………………………………82 附錄A ……………………………………………………………………86 附錄B ……………………………………………………………………88 附錄C ……………………………………………………………………90

    [1] 曾坤祥, 基於小波之反覆學習控制器設計及應用, 國立清華大
    學動力機械工程學系博士論文, 2005.
    [2] 許光興, 直線型分解式位置感測器電路設計, 國立清華大學
    動力機械工程學系碩士論文, 2000.
    [3] C. H. Yim, J. I. Ha and M. S. Ko, “A Resolver-to-
    Digital Conversion Method for Fast Tracking,” IEEE
    Trans. Industrial Electorics, Vol. 39, No. 5, pp.369-
    378, 1992.
    [4] 楊斌強, 多用途數位位置轉換器之設計與實作, 國立清華大學
    動力機械工程學系碩士論文, 2002.
    [5] C. Attaianese, G. Tomasso and D. De Bonis, “A Low Cost
    Resolver-to-Digital Converter,” IEEE Conf. Electric
    Machines
    and Drives, Cambridge, MA, pp. 917-921, 2001.
    [6] Du Chunyang and Yang Guijie, “Error analysis and
    compensation for Inductosyn-based position measuring
    system,” in IEEE Conf. Industry Applications, Vol. 1,
    pp.6-10, 2003.
    [7] D.C. Hanselman, “ Techniques for improving resolver-
    to-digital conversion accuracy,” IEEE Trans.
    Industrial Electronics, Vol. 38, No. 6, pp.501-504,
    1991.
    [8] D.C Hanselman, “Resolver signal requirements for high
    accuracy resolver-to-digital conversion,” IEEE Trans.
    Industrial Electronics, Vol. 37, No. 6, pp.556-561,
    1990.
    [9] 劉昭恕, 反覆學習之控制器設計, 國立清華大學動力機械工程
    學系博士論文, 1998.
    [10] Bunte. and S. Beineke, “High-performance speed
    measurement by suppression of systematic resolver and
    encoder errors,” IEEE Trans. Industrial Electronics,
    Vol. 51, No. 1, pp.49-53, 2004.
    [11] 許仕佳, 小波轉換於解角/數位轉換器之應用, 國立清華大學
    動力機械工程學系碩士論文, 2005.
    [12] ADSP-21161 SHARC DSP Hardware Reference, 3rd edition.
    Norwood, MA: Analog Devices, Inc, 2002.
    [13] ADSP-21161N EZ-KIT LITE Evaluation System Manual, 2nd
    edition. Norwood, MA: Analog Devices, Inc, 2003.
    [14] Gibert Strang and Truong Nguyen, Wavelet and Filter
    Banks,Wellesy-Chambirdge Press, 1996.
    [15] Ingrid Daubechies, “Where do wavelets come from? A
    personal point of view,” Proceedings of the IEEE,
    Vol. 84,No. 4, pp 510-513, 1996.
    [16] Ingrid Daubechies, “Wavelet: a tool for time-
    frequency analysis,” Multidimensional Signal
    Processing Workshop, Sixth, IEEE Int. Conf, Pacific
    Grove, CA. pp.98, 1989.
    [17] 單維彰, 凌波初步, 全華科技圖書, 1998.
    [18] T. B. Littler and D. J. Morrow, “Wavelet for the
    Analysis and Compression of Power System
    Disturbances,’’ IEEE Trans.Power Delivery, Vol. 14,
    No 2, pp.358-364, 1999.
    [19] O. Possion, P. Rioual and M. Meunier, “Detection and
    Measurement of Power Quality Disturbance Using Wavelet
    Transform,” IEEE Trans. Power Delivery, Vol. 15, No.
    3,pp.1039-1044, 2000.
    [20] 張家銘, 應用小波類神經網路於旋轉型感應馬達位置控制, 元
    智大學電機工程學系碩士論文, 2000
    [21] C.L. Lin, N.C. Shieh and P.C Tung, “Robust wavelet
    neuro control for linear brushless motors,” IEEE
    Trans. Aerospace and Electronic Systems, Vol. 38,
    pp.918-932, 2002.
    [22] Q. Zhang and A. Benveniste, “Wavelet Networks,” IEEE
    Trans. Neural Networks, Vol. 3, No. 11, pp.889-898,
    1992.
    [23] Z. Bien and K. M. Huh, “High-order iterative learning
    control algorithm,” Proc. Inst. Elec. Eng. Control
    Theory and Applications, Vol. 136, No. 3, pt. D,
    pp.105-112, 1989.
    [24] S. Arimoto, S. Kawamura, and F. Miyazaki, ” Bettering
    operation of robots by learning,” J. of Robotic
    Systems, Vol. 1, pp.123-140, 1984.
    [25] T. J. Jang, C. H. Cho, and H. S. Ahn, “Iterative
    learning control in feedback system,” Automatica,
    Vol. 31, No. 2, pp.243-248, 1995.
    [26] S. Arimoto, T. Naniwa, and H. Suzuki, “Robustness of
    P-type learning control with a forgetting factor for
    robotic motions,” Proc. 29th IEEE Conf. Decision and
    Control , Honolulu, HI, Dec. 5-7, Vol. 5, pp. 2640-
    2645, 1990.
    [27] L. Cai, and W. Huang, ”Fourier base learning control
    and application to position table,” Robotics and
    Autonomous System, Vol.32, pp. 89-100, 2000.
    [28] J. X. Xu, R. Yan, and Z. H. Guan, “Direct learning
    control design for a class of linear time-varying
    switched systems,” IEEE Transactions on Circuits and
    Systems, Vol.50, No. 8, pp.1116 -1120, 2003.
    [29] 曾達欽, 以小波轉換為基礎之反覆學習控制律設計, 國立清華
    大學動力機械工程學系碩士論文, 2004
    [30] SHARC DSP Microcomputer ADSP-21161N, rev. 0.
    Norwood, MA: Analog Devices, Inc, 2002.
    [31] 李澤函, 運算放大器應用大全, 儒林, 1988.
    [32] R. H. Brown, S. C. Schneider, and M. G. Mulligan,
    “Analysis of algorithms for velocity estimation from
    discrete position versus time data, ” IEEE Trans.
    Ind. Electron, Vol. 39, pp.11-19, Feb. 1992.
    [33] Se-Han Lee, Ty A. Lasky, and Steven A. Velinsky,
    “Improved Velocity Estimation for Low-Speed and
    Transient Regimes Using Low-Resolution Encoders, ”
    IEEE/ASME Transactions on
    Mechatronics, Vol. 9, No. 3, 2004.
    [34] Paul S. Carpenter, Ronald H. Brown, James A. Heinen,
    and Susan C. Schneider “On Algorithms for Velocity
    Estimation Using Discrete Position Encoders,” IEEE
    IECON International Conference on, Orlando, FL, Vol.
    2, pp.844-849, 1995.
    [35] 徐文浩,電場力與離心力交互作用之類光碟機式微電泳
    生醫分離系統, 國立中興大學精密工程研究所, 2003.
    [36] 王信博, 光碟機主軸伺服控制晶片之設計與實作, 國立清華大
    學動力機械工程學系碩士論文, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE