簡易檢索 / 詳目顯示

研究生: 方俊仁
CHUN-JEN FANG
論文名稱: 限制圓狀空氣噴流陣列衝擊於靜止或旋轉多晶片模組圓盤之散熱最佳化研究
Thermal Optimization for a Confined Stationary or Rotating MCM Disk with Round Air Jet Array Impingement
指導教授: 洪英輝
YING-HUEI HUNG
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 510
中文關鍵詞: 限制圓狀空氣噴流衝擊靜止或旋轉多晶片模組圓盤噴流陣列衝擊單一噴嘴噴流衝擊散熱最佳化
外文關鍵詞: Confined, Round Air Jet Impingement, Stationary or Rotating, MCM Disk, Jet Array Impingement, Single Jet Impingement, Thermal Optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中成功地建立了一系列的實驗系統與量測方法,分別針對靜止或旋轉多晶片模組圓盤在受到不同冷卻技術之下的暫態到穩態熱流特性來做一系列的研究與探討。在本研究中的實驗設計方法是採用統計學上的中央合成設計方法來規劃整個實驗參數組合。研究中所探討的相關參數包括: 穩態葛拉雪夫數、限制板間距與圓盤直徑比、噴流間距與噴嘴直徑比、噴流雷諾數以及旋轉雷諾數。這些參數的探討範圍是Grs = 2.32 ×105 - 2.57×106, H/D = 0.083 - 1.2, H/d = 0.83 - 14.4, Rej = 89 - 17364 與 Rer = 0 - 2903。同時也針對影響靜止或旋轉多晶片模組圓盤在不同冷卻技術之下的暫態到穩態熱流特性相關參數分別做探討分析。並且利用統計學上的變異數分析方法來做敏感度分析測試可定量地分析出系統中相關參數影響之重要性,接著應用反應曲面法搭配數值最佳化方法來有效的求出在各種限制條件下的最佳化散熱研究設計組合。
    在本研究中之冷卻技術可分為以下六種:(一)靜止圓盤之自然對流、(二)旋轉圓盤之強制對流、(三)限制圓狀空氣噴流衝擊於靜止圓盤之強制對流、(四)限制圓狀空氣噴流衝擊於旋轉圓盤之混合對流、(五)限制圓狀空氣噴流陣列衝擊於靜止圓盤之強制對流、(六)限制圓狀空氣噴流陣列衝擊於旋轉圓盤之混合對流。
    在流場特性方面,所探討的流力特性包括: 噴嘴出口附近的噴流速度與紊流強度分佈、噴流潛變中心長度、沿噴流中心線之噴流速度衰減與紊流強度變化情形以及加熱面附近的流場特性。從實驗量測結果顯示:對於限制圓狀空氣噴流單一噴嘴衝擊而言其流場分佈是屬於對稱性的流場,而限制圓狀空氣噴流陣列衝擊其流場則是屬於非對稱性的流場分佈。而在噴嘴出口的流場觀察僅可分成初始過渡轉變區以及全紊流發展區域。在本空氣噴流陣列衝擊研究中並沒有觀察到初始層流發展區域這個區間,這是與傳統限制圓狀空氣噴流單一噴嘴衝擊不同之處。此外,為了評估限制圓狀空氣噴流陣列衝擊於靜止或旋轉多晶片模組圓盤之流場特性對於各個噴嘴出口的噴流潛變中心長度之影響,在本研究中分別對於特定的噴嘴出口提出了新的經驗公式,此公式可以準確地用來預測限制圓狀空氣噴流陣列衝擊於靜止或旋轉多晶片模組圓盤之各個不同噴嘴出口的噴流潛變中心長度值。
    在熱傳特性方面,分別針對在不同冷卻技術下的暫態到穩態之局部和平均熱傳特性來做探討,從實驗量測結果顯示:在限制圓狀空氣噴流陣列衝擊之下其溫度場分佈是屬於對稱性的分佈。亦針對停滯點、局部和平均熱傳特性來做探討分析。並且對於靜止或旋轉多晶片模組圓盤在不同冷卻技術之下其自然對流、圓盤旋轉以及限制圓狀空氣噴流衝擊之間的交互影響來做定量上的研究分析。在研究中更分別對於停滯點、局部和平均紐塞數提出新的經驗公式。同時,為了詮釋圓盤旋轉和空氣噴流衝擊之間的交互作用對於多晶片模組圓盤之對流熱傳特性的影響,在本研究中亦分別針對限制圓狀空氣噴流單一噴嘴與陣列衝擊提出兩條新的經驗公式,當在某特定的限制高度以及旋轉雷諾數與噴流雷諾數比值之下時,可用來區分出圓盤旋轉和噴流衝擊兩類熱傳模式。另外,針對在相同的參數條件之下時,限制圓狀空氣噴流陣列衝擊與傳統限制圓狀空氣噴流單一噴嘴衝擊在熱傳上的增益效果來做探討分析,並且提出一條新的經驗公式來預測空氣噴流陣列衝擊之下的熱傳增益量。
    最後,在本研究中更針對平均穩態紐賽數以及平均穩態熱傳係數成功地發展出一套應用於不同冷卻技術之下的散熱最佳化研究設計方法,此方法可使設計者有效且快速地在多個限制條件之下找出最佳化的散熱研究設計組合。首先,利用工程統計分析所作出的敏感度測試可定量地分析出系統中相關參數影響之重要性;接著應用反應曲面法搭配實驗計劃法來得到迴歸曲面模型;最後再藉由數值最佳化方法來有效的求出在各種限制條件下的最佳化散熱研究設計。應用此最佳化方法及流程,可以成功地對於多晶片模組圓盤在不同冷卻技術之下得到各種限制條件下的散熱最佳化研究設計結果。研究中更對於工業界實務應用上,進一步地提出一條新的經驗公式,來評估總輸入能源消耗與系統所得到的最佳化平均穩態熱傳係數之間的關係。


    A series of experimental investigations with stringent measurement methods on the studies related to fluid flow and heat transfer characteristics of a stationary or rotating MCM disk with various cooling techniques have been performed. The total experimental cases for a stationary or rotating MCM disk with various cooling techniques are statistically designed by the Design of Experiments (DOE) together with Central Composite Design method (CCD). The relevant parameters influencing fluid flow and heat transfer performance for a stationary or rotating MCM disk with various cooling techniques include: steady-state Grashof number (Grs), ratio of the confinement spacing to disk diameter (H/D), ratio of jet separation distance to nozzle diameter (H/d), jet Reynolds number (Rej) and rotational Reynolds number (Rer). The ranges of the above-mentioned parameters are: Grs = 2.32 ×105 - 2.57×106, H/D = 0.083 - 1.2, H/d = 0.83 - 14.4, Rej = 89 - 17364 and Rer = 0 - 2903. Their effects on fluid flow and heat transfer characteristics for a stationary or rotating MCM disk with various cooling techniques have been systematically explored. In addition, a sensitivity analysis, the so-called “ANOVA”, for the design factors has been performed. An effective optimal method with the RSM and SQP techniques for performing the thermal optimization of a stationary or rotating MCM disk with various cooling techniques under multi-constraints has been successfully developed. Six subtopics of thermal optimization have been systematically explored. They are (1) a confined stationary MCM disk in natural convection; (2) a confined rotating MCM disk; (3) a stationary MCM disk with confined single round jet impingement; (4) a confined rotating MCM disk with single round jet impingement;(5) a confined stationary MCM disk with round jet array impingement; and (6) a confined rotating MCM disk with round jet array impingement.
    In hydrodynamic aspect, the fluid flow characteristics including the streamwise velocity and turbulence intensity distributions at nozzle exits, jet potential core length, streamwise velocity decay along jet centerline and turbulence intensities evolution along jet centerline are investigated. The flow behaviors for single round jet and for jet array impingement have been experimentally verified as a symmetrical flow and an unsymmetrical flow, respectively. Based on the measurement of the above-mentioned jet flow characteristics for jet array impingement, the jet flow behaviors at nozzle exits can be classified into two regimes such as “initially transitional flow regime” and “initially turbulent flow regime.” Additionally, new correlations of the ratio of potential core length to nozzle diameter, Lpc/d, in terms of relevant influencing parameters for a confined stationary or rotating MCM disk with single round jet and round jet array impingement at various nozzle jets are presented.
    In heat transfer aspect, from all the experimental data measured for transient-/steady-state local and average heat transfer characteristics, the thermal behavior has been verified to be axisymmetrically maintained and the results have been achieved in an axisymmetric form. The stagnation, local and average heat transfer characteristics for a stationary or rotating MCM disk with various cooling techniques are successively explored. Besides, the mutual influences among buoyancy, disk rotation and jet impingement on the heat transfer performance of a confined stationary or rotating MCM disk with round jet array impingement have been quantitatively evaluated. New correlations of stagnation, local and average Nusselt numbers in terms of relevant parameters are proposed. To interpret the convective heat transfer characteristics on the confined stationary or rotating MCM disk surface due to the mutual effects among jet impingement and disk rotation, the heat transfer behavior can be classified into two distinct heat transfer regimes such as disk rotation-dominated regime and jet impingement-dominated regime for the cases with a specified ratio of rotational Reynolds number to jet Reynolds number, i.e., . Two empirical correlations of classifying these two distinct regimes are proposed for the single round jet and jet array impingement, respectively. The steady-state heat transfer enhancement for jet array impingement compared with single round jet impinging onto a confined stationary or rotating MCM disk has been systematically explored; and a new correlation of the heat transfer enhancement ratio, , in terms of relevant influencing parameters is reported.
    Furthermore, a series of thermal optimizations with multiple constraints such as space, jet Reynolds number, rotational Reynolds number, nozzle exit velocity, disk rotational speed and total power consumption constraints for a stationary or rotating MCM disk with various cooling techniques have been performed and discussed. New correlations of the optimal steady-state average heat transfer performance for the cases of a confined stationary or rotating MCM disk with single round jet or jet array impingement are finally presented.

    ABSTRACT ACKNOWLEDGMENTS LIST OF TABLES LIST OF FIGURES NOMENCLATURE CHAPTER 1 INTRODUCTION AND BACKGROUND 1.1 Rationale 1 1.2 FUNDAMENTAL mechanism of cooling methods 1.2.1 Disk Rotation 1.2.2 Submerged Single Jet Impingement 1.2.3 Submerged Jet Array Impingement 1.3 Literature survey 1.3.1 Convection from a Confined Stationary Heated Disk 1.3.2 Convection from a Confined Rotating Heated Disk 1.3.3 Round Jet Array Impingement 1.3.4 Design Optimization Techniques 1.4 RESEARCH TOPICS AND OBJECTIVES 1.5 THESIS ORGANIZATION CHAPTER 2 THE EXPERIMENTS 2.1 description of EXPERIMENTAL Facilities 2.1.1 Air Supply Facilities 2.1.2 Test Section (A) Single Jet Test Chamber (B) Jet Array Test Chamber (C) MCM Target Block 2.1.3 Rotating Facilities 2.1.4 Apparatus and Instrumentation 2.2 Data Acquisition and control 2.3 Experimental Procedures 2.4 DATA REDUCTION 2.4.1 Fluid Flow Characteristics 2.4.2 Heat Transfer Characteristics 2.5 DESIGN OF EXPERIMENTS 2.5.1 Central Composite Design 2.5.2 Test Matrix (A) Thermal Optimization for a Confined Stationary MCM Disk in Natural Convection (B) Thermal Optimization for a Confined Rotating MCM Disk (C) Thermal Optimization for a Confined Stationary MCM Disk with Single Round Jet Impingement (D) Thermal Optimization for a Confined Rotating MCM Disk with Single Round Jet Impingement (E) Thermal Optimization for a Confined Stationary MCM Disk with Round Jet Array Impingement (F) Thermal Optimization for a Confined Rotating MCM Disk with Round Jet Array Impingement 2.6 UNCERTAINTY ANALYSIS 2.7 SENSITIVITY ANALYSIS CHAPTER 3 METHODOLOGY FOR OPTIMAL DESIGN 3.1 RESPONSE SURFACE METHODOLOGY 3.1.1 Least Squares Regression Analysis 3.1.2 Accuracy and Adequacy of Regression Model 3.2 NUMERICAL OPTIMIZATION TECHNIQUES 3.2.1 Sequential Quadratic Programming 3.2.2 Globally Optimal Solution CHAPTER 4 FLUID FLOW CHARACTERISTICS FOR A CONFINED STATIONARY OR ROTATING MCM DISK WITH SINGLE ROUND JET OR JET ARRAY IMPINGEMENT 4.1 FLUID FLOW CHARACTERISTICS FOR A CONFINED STATIONARY MCM DISK WITH SINGLE ROUND JET OR JET ARRAY IMPINGEMENT 4.1.1 Jet Flow Characteristics at Nozzle Exits for Confined Jet Array Impingement (A)Streamwise Velocity Distribution (B)Turbulence Intensity Distribution 4.1.2 Flow Characteristics along Jet Centerlines for Confined Jet Array Impingement (A)Streamwise Velocity Decay along Jet Centerline (B)Turbulence Intensity Evolution along Jet Centerline 4.1.3 Jet Flow Characteristics at Different Axial Locations for Confined Jet Array Impingement (A)Streamwise Velocity Distribution (B)Turbulence Intensity Distribution 4.2 FLUID FLOW CHARACTERISTICS FOR A CONFINED ROTATING MCM DISK WITH SINGLE ROUND JET OR JET ARRAY IMPINGEMENT 4.2.1 Jet Flow Characteristics at Nozzle Exits for Confined Jet Array Impingement (A)Streamwise Velocity Distribution (B)Turbulence Intensity Distribution 4.2.2 Flow Characteristics along Jet Centerlines for Confined Jet Array Impingement (A)Streamwise Velocity Decay along Jet Centerline (B)Turbulence Intensity Evolution along Jet Centerline 4.2.3 Jet Flow Characteristics at Different Axial Locations for Confined Jet Array Impingement (A)Streamwise Velocity Distribution (B)Turbulence Intensity Distribution CHAPTER 5 THERMAL OPTIMIZATION FOR A CONFINED STATIONARY OR ROTATING MCM DISK 5.1 THERMAL OPTIMIZATION FOR A CONFINED STATIONARY MCM DISK IN NATURAL CONVECTION 5.1.1 Heat Transfer Characteristics (A) Definition of Heat Transfer Parameters (B) Transient Heat Transfer Characteristics (1) Transient Stagnation Nusselt Numbers (2) Transient Local Nusselt Numbers (3) Transient Average Nusselt Numbers (C) Steady-state Heat Transfer Characteristics (1) Local Steady-state Nusselt Numbers (2) Average Steady-state Nusselt Numbers (3) Sensitivity Analysis 5.1.2 Thermal Optimization (A) Accuracy and Adequacy of RSM Model (B) Thermal Optimization with Parametric Boundary Constraints Only (C) Thermal Optimization with Parametric Boundary and Space Constraints 5.2 THERMAL OPTIMIZATION FOR A CONFINED ROTATING MCM DISK 5.2.1 Heat Transfer Characteristics (A) Definition of Heat Transfer Parameters (B) Transient Heat Transfer Characteristics (1) Transient Stagnation Nusselt Numbers (2) Transient Local Nusselt Numbers (3) Transient Average Nusselt Numbers (C) Steady-state Heat Transfer Characteristics (1) Local Steady-state Nusselt Numbers (2) Average Steady-state Nusselt Numbers (3) Sensitivity Analysis 5.2.2 Thermal Optimization (A) Accuracy and Adequacy of RSM Model (B) Thermal Optimization with Parametric Boundary Constraints Only (C) Thermal Optimization with Parametric Boundary, Space and Rotational Reynolds Number Constraints CHAPTER 6 THERMAL OPTIMIZATION FOR A CONFINED STATIONARY OR ROTATING MCM DISK WITH SINGLE ROUND JET IMPINGEMENT 6.1 THERMAL OPTIMIZATION FOR A CONFINED STATIONARY MCM DISK WITH SINGLE ROUND JET IMPINGEMENT 6.1.1 Heat Transfer Characteristics (A) Definition of Heat Transfer Parameters (B) Transient Heat Transfer Characteristics (C) Steady-state Heat Transfer Characteristics (1) Local Steady-state Nusselt Numbers (2) Average Steady-state Nusselt Numbers (3) Sensitivity Analysis 6.1.2 Thermal Optimization (A) Accuracy and Adequacy of RSM Model (B) Thermal Optimization with Parametric Boundary Constraints Only (C) Thermal Optimization with Parametric Boundary, Space and Jet Reynolds Number Constraints 6.2 THERMAL OPTIMIZATION FOR A CONFINED ROTATING MCM DISK WITH SINGLE ROUND JET IMPINGEMENT 6.2.1 Heat Transfer Characteristics (A) Transient Heat Transfer Characteristics (B) Steady-state Heat Transfer Characteristics (1) Local Steady-state Nusselt Numbers (2) Average Steady-state Nusselt Numbers (3) Sensitivity Analysis 6.2.2 Thermal Optimization (A) Accuracy and Adequacy of RSM Model (B) Thermal Optimization with Parametric Boundary Constraints Only (C) Thermal Optimization with Parametric Boundary, Jet and Rotational Reynolds Number Constraints (D) Thermal Optimization with Parametric Boundary, Velocity and Rotational Speed Constraints (E) Thermal Optimization with Parametric Boundary, Jet and Rotational Power Consumption Constraints (F) Thermal Optimization with Parametric Boundary and Total Power Consumption Constraints CHAPTER 7 THERMAL OPTIMIZATION FOR A CONFINED STATIONARY MCM DISK WITH ROUND JET ARRAY IMPINGEMENT 7.1 HEAT TRANSFER CHARACTERISTICS 7.1.1 Surface Temperature Distributions on MCM Disk 7.1.2 Transient Heat Transfer Characteristics (A) Transient Heat Flux Distribution of Input Power (B) Transient Convective Heat Flux Distribution (C) Transient Stagnation Nusselt Numbers (D) Transient Local Nusselt Numbers (E) Transient Average Nusselt Numbers 7.1.3 Steady-state Heat Transfer Characteristics (A) Local Steady-state Nusselt Numbers (B) Average Steady-state Nusselt Numbers (C) Sensitivity Analysis 7.2 THERMAL OPTIMIZATION 7.2.1 Accuracy and Adequacy of RSM Model 7.2.2 Thermal Optimization with Parametric Boundary Constraints Only 7.2.3 Thermal Optimization with Parametric Boundary, Space and Jet Reynolds Number Constraints CHAPTER 8 THERMAL OPTIMIZATION FOR A CONFINED ROTATING MCM DISK WITH ROUND JET ARRAY IMPINGEMENT 8.1 HEAT TRANSFER CHARACTERISTICS 8.1.1 Surface Temperature Distributions on MCM Disk 8.1.2 Transient Heat Transfer Characteristics (A) Transient Heat Flux Distribution of Input Power (B) Transient Convective Heat Flux Distribution (C) Transient Stagnation Nusselt Numbers (D) Transient Local Nusselt Numbers (E) Transient Average Nusselt Numbers 8.1.3 Steady-state Heat Transfer Characteristics (A) Local Steady-state Nusselt Numbers (B) Average Steady-state Nusselt Numbers (C) Sensitivity Analysis 8.2 THERMAL OPTIMIZATION 8.2.1 Accuracy and Adequacy of RSM Model 8.2.2 Thermal Optimization with Parametric Boundary Constraints Only 8.2.3 Thermal Optimization with Parametric Boundary, Jet and Rotational Reynolds Number Constraints 8.2.4 Thermal Optimization with Parametric Boundary, Velocity and Rotational Speed Constraints 8.2.5 Thermal Optimization with Parametric Boundary, Jet and Rotational Power Consumption Constraints 8.2.6 Thermal Optimization with Parametric Boundary, Total Power Consumption Constraints CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 9.1 CONCLUSIONS 9.1.1 Fluid Flow Characteristics for a Confined Stationary or Rotating MCM Disk with Single Round Jet or Jet Array Impingement 9.1.2 Thermal Optimization for a Confined Stationary or Rotating MCM Disk 9.1.3 Thermal Optimization for a Confined Stationary or Rotating MCM Disk with Single Round Jet Impingement 9.1.4 Thermal Optimization for a Confined Stationary or Rotating MCM Disk with Round Jet Array Impingement 9.2 RECOMMENDATIONS REFERENCES APPENDIX A CALIBRATION OF AIR FLOW RATE APPENDIX B CALIBRATION OF AIR VELOCITY APPENDIX C EMISSIVITY DETERMINATION OF MCM DISK SURFACE APPENDIX D EMPIRICAL CORRELATIONS FOR AIR PROPERTIES APPENDIX E CONDUCTIVE HEAT LOSS FROM HEATER TO BALSA WOOD APPENDIX F DETERMINATION OF THERMAL CONDUCTIVITY OF BALSA SLAB APPENDIX G UNCERTAINTIES ANALYSIS

    [1] Bergles A. E., 1986, “Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment,” ASME Heat Transfer in Electronic Equipment, Vol.57, pp.1-9.
    [2] Minges, M. L., 1989, “Electronic Materials Handbook Volume 1: Packaging,” ASM International, Materials Park, Ohio, pp.46-49.
    [3] Bar-Cohen, A., Mudawar, I., and Whalen, B., 1986, “Future Challenge for Electronic Cooling,” ed. by Incropera, F. P., Published by the National Science Fundation and Purdue University, pp. 70-77.
    [4] Chu, R. C., and Simons, R. E., 1984, “Thermal Management of Large Scale Digital Computers,” The International Society for Hybrid Microelectronics, Vol.7, No.3, pp.35-43.
    [5] Kiper, A., 1984, “Impinging Water Jet Cooling of VLSI Circuits,” Int. Comm. Heat Transfer, Vol.11, pp.517-526.
    [6] Hoyt, J. W., and Taylor, J. J., 1985, “Effect of Nozzle Boundary Layer on Water Jets Discharging in Air,” In Jets and Cavities — International Symposium, ASME, New York, pp.93-100.
    [7] McNaughton, K. J., and Sinclair, C. G., 1966, “Submerged Jets in Short Cylindrical Vessels,” J. Fluid Mech. Vol.25, pp.367-375.
    [8] Gardon, R., and Akfirat, J. C., 1965, “The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,” Int. J. Heat Mass Transfer, Vol.8, pp.1261-1272.
    [9] Martin, H., 1977, “Heat and Mass Transfer between Impinging Gas Jet and Solid Surface,” In Advances in Heat Transfer, Vol.13, ed. by Hartnett, J. P., and Irvine, Jr., T. F., Academic Press Inc., New York, pp.1-60.
    [10] K.R. Saripalli, “Visualization of multijet impingement flow,” AIAA J. 21 (4)
    (1983) 483-484.
    [11] Schlichting, H., 1979, “Boundary-Layer Theory,” tr. by Kestin J., 7th ed. McGraw- Hill, New York.
    [12] Yih, C., 1951 “Free Convection due to a Point Source of Heat,” Proc.1st National Congress of Applied Mechanics, pp.941-947.
    [13] Fujii, T., 1963, “Theory of the Steady Laminar Natural Convection above a Horizontal Line Heat Source on a Point Heat Source,” Int. J. Heat Mass Transfer, Vol.6, pp.597-606.
    [14] Rotem, Z., and Claassen, L., 1969, “Natural Convection above Unconfined Horizontal Surfaces,” J. Fluid Mechanics, Vol.9, pp.173-192.
    [15] Goldstein, R. J., Sparrow, E. M., and Jones, D. C., 1973, “Natural Convection Mass Transfer Adjacent to Horizontal Plates,” Int. J. Heat Mass Transfer, Vol.16, pp.1025-1035.
    [16] Goldstein, R. J., and Lau, K. S., 1983, “Laminar Natural Convection from a Horizontal Plate and the Influence of Plate-edge Extensions,” J. Fluid Mech., Vol.129, pp.55-75.
    [17] Al-Arabi, M., and El-Riedy, M. K., 1976, “Natural Convection Heat Transfer from Isothermal Horizontal Plates of Different Shapes,” Int. J. Heat Mass Transfer, Vol.19, pp.1399-1404.
    [18] Ellison, G. N., 1984, “Thermal Computations for Electronic Equipment,” Van Nostrand Reinhold Co., New York.
    [19] Ozisik, M.N., and Bayazitoglu, Y., 1988, “Elements of Heat Transfer,” Mcgraw-Hill, New York.
    [20] Li, C. J., 1997, “An Experimental Study for Heat Transfer Characteristics on a Rotating Heated Disk,” Master Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    [21] Guo, Y. W., 1998, “Heat Transfer Behavior of a Round Water Jet Impinginf onto a Heated Disk of Multichip Module,” Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    [22] Shieh, Y. R., and Hung, Y. H., 1998,“Heat Transfer of Jet Impingement from a Confined Stationary or Rotating Disk of Multi-Chip Modules,” the Second Electronic Packaging Technology Conference, Singapore, November 1998.
    [23] Shieh, Y. R., Li, C. J., and Hung, Y. H., 1999, “Heat Transfer from a Horizontal Wafer-Based Disk of Multi-Chip Modules,” Int. J Heat Mass Transfer, Vol.42, pp.1007-1022.
    [24] Tsai, C. H., 1994, “Transient Heat Transfer Characteristics of a Round Jet Impingement,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
    [25] Li, C. J., 1997, “An Experimental Study for Heat Transfer Characteristics on a Rotating Heated Disk,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
    [26] Su, W. M, 2000, “Transient Convective Heat Transfer from a Stationary or Rotating Ceramic-Based MCM Disk,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
    [27] Gardon, R., and Conbonpue, J., 1962, “Heat Transfer Between a Flat Plate and Jets of Air Impingement on it,” Internal Development in Heat Transfer ASME, pp.454-460.
    [28] Hrycak, P., 1983, “Heat Transfer from Impinging Jets to a Flat Plate,” Int. J. Heat Mass Transfer, Vol.26, pp.1857-1865.
    [29] Goldstein, R. J., and Franchett, M. E., 1988, “Heat Transfer from a Flat Surface to an Oblique Imingement Jet,” ASME J. Heat Transfer, Vol.110, pp.84-90.
    [30] Stevens, J., and Webb, B. W., 1991, “Measurements of the Free Surface Flow Structure under an Impinging, Free Liquid Jet,” ASME J. Heat Transfer, Vol.114, pp.79-84.
    [31] Mohanty, A. K., and Tawfek, A. A., 1993, “Heat Transfer due to a Round Jet Impinging Normal to a Flat Surface,” Int J. Heat Mass Transfer, Vol.36, pp.1639-1647.
    [32] Scholtz, M. T., and Trass, O., 1970, “Mass Transfer in Nonuniform impinging Jet,” American Institute Chemical Engineering Journal, Vol.16, pp.82-96.
    [33] Saad, N. R., Mujumdar, A. S., and Douglas, W. J. M, 1977, “Prediction of Heat Transfer under an Axisymmetric Laminar Impinging Jet,” Ind. Eng. Chem. Fund., Vol.16, pp.148-154.
    [34] van der Meer, T. H., 1984, “Heat Transfer form Impinging Flame Jets,” Doctoral Thesis, Technical University of Delft, Netherlands, September.
    [35] Abrosimov, A. I., 1984, “Internal Peak of Heat Transfer Coefficients for a Plate,” All-Unit Scientific-Research Institute of Electrical-Engineering Equipment Translated from Teplofizika, V.T., Vol.3, pp.517-522.
    [36] Masliyah, J. H., and Nguyen, T. T., 1979, “Mass Transfer Due to an Impinging Slot Jet,” Int. J. Heat Mass Transfer, Vol.22, pp.237-244.
    [37] Hamadah, T. T., 1989a, “Air Jet Impingement Cooling of an Array of Simulated Electronics Packages,” 1989 ASME National Heat Transfer Conference, HTD- Vol.111, pp.97-106.
    [38] Hamadah, T. T., 1989b, “Impinging Cooling of a Simulated Electronic Package with a Square Array of Round Air Jets,” 1989 ASME National Heat Transfer Conference, HTD-Vol.111, pp.107-112.
    [39] Hollworth, B. R., and Durbin, M., 1989, “Impingement Cooling of Electronics,” 1989 ASME National Heat Transfer Conference HTD-Vol.111, pp.89-96.
    [40] Schafer, D. M., Incropera, F. P., and Ramadhyani, S., 1992, “Numerical Simulation of Laminar Convection Heat Transfer from an In-line Array of Discrete Sources to a Confined Rectangular Jet,” Numerical Heat Transfer A, Vol.22, pp.121-141.
    [41] Besserman, D. L., Ramadhyani, S. and Incropera, F. P., 1991, “Experimental Study of Heat Transfer from a Discrete Source to a Circular Liquid Jet With Annular Collection of Spent Liquid,” Experimental Heat Transfer, Vol.4, pp.41-57.
    [42] Sun, H., Ma, C. F., and Nakayama, W., 1993, “Local Characteristics of Convective Heat Transfer from Simulated Microelectronic Chips to impinging Submerged Round Water Jets,” ASME J. Electronic Packaging, Vol.115, pp.71-77.
    [43] Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., 1992, “A Review of Heat Transfer Data for Single Circular Jet Impingement,” Int. J. Heat and Fluid Flow, Vol.13, pp.106-115.
    [44] Garimella, S. V., and Rice, R. A., 1994, “Heat Transfer in Submerged and Confined Jet Impingement,” ASME, Heat Transfer in High Heat Flux Systems, HTD-Vol.301, pp.59-68.
    [45] Elison, B., and Webb, B. W., 1994, “Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes,” Int. J. Heat Transfer, Vol.37, pp.1207-1216.
    [46] Lin, Z. H., Huang, C. L., and Hung, Y. H., 1996, “Heat Transfer investigation on a Flat Plate by Using Confined Round Jet Impingement,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.2, pp.173-184.
    [47] Su, W. S., Liu, L. K., and Hung, Y. H., 2002, “Transient Convective Heat Transfer from a Stationary or Rotating MCM Disk with a Confined Air Jet Impingement,” The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, February 10-14.
    [48] Von Karman, T., 1946, “On Laminar and Turbulent friction,” NACA Report No.1902.
    [49] Wanger, C., 1948, “Heat Transfer from a Rotating Disk to Ambient Air,” J. Appl. Phys., Vol.19, pp.837-839.
    [50] Cobb, E. C., and Saunders, O. A., 1956, “Heat Transfer from a Rotating Disk,” Proc. Roy. Soc. A, 236, pp.343-351.
    [51] Hartnett, J. P., 1959, “Heat Transfer from a Nonisothermal Disk Rotating in Still Air,” J. Appl. Mech., Vol.26, pp 672-673.
    [52] Sparrow, E. M., and Gregg, J. L., 1959, “Heat Transfer from a Rotating Disc to Fluids of Any Prandtl Number,” ASME J. Heat Transfer, Vol.81, pp.249-251.
    [53] Riley, N., 1964, “The Heat Transfer from a Rotating Disk,” Quart. J. Mech. App. Math., Vol.17, pp.331-349.
    [54] Kreith, F., Taylor, J. H., and Chong, J. P., 1959, “Heat Transfer and Mass Transfer from a Rotating Disk,” ASME J. Heat Transfer, Vol.81, pp.95-105.
    [55] Tien, C. L., 1960, “Heat Transfer by Laminar Flow from a Rotating Cone,” ASME J. Heat Transfer, Vol.82, pp.252-253.
    [56] Sreenivasan, S., 1973, “Laminar Mixed Convection from a Rotating Disc,” Int. J. Heat Mass Transfer, Vol.16, pp.1489-1492.
    [57] Oehlbeck, D. L., and Erian, F. F., 1979, “Heat Transfer from Axisymmetric Sources at the Surface of a Rotating Disk,” Int. J. Heat Mass Transfer, Vol.22, pp.601-610.
    [58] Lin, H. T., and Lin, L. K., 1987, “Heat Transfer from a Rotating Cone or Disk to Fluids of Any Prandtl number,” Int. Comm. Heat Mass Transfer, Vol.14, pp.323-332.
    [59] Owen, J. M, and Rogers, R. H., 1989, “Flow and Heat Transfer in Rotating Disc Systems, Vol.1-Rotor-Stator Systems,” Research Studies Press, Taunton, England.
    [60] Metzger, D. E., Mathis, W. J., and Grochowsky, L. D., 1979, “Jet Cooling at the Rim of a Rotating Disk,” ASME J. Eng. Power, Vol.101, pp.68-72.
    [61] Popiel, C. O., and Boguslawski L., 1986, “Local Heat Transfer from a Rotating Disk in an Impingement Round Jet,” ASME J. Heat Transfer, Vol.108, pp.357-363.
    [62] Brodersen, S., and Metzger, D., 1992, “Experimental Investigation of the Flow field resulting from the Interaction between an Impinging Jet and a Rotating Disk,” ASME J. Fluids Engineering, Vol.101, pp.32-39.
    [63] Brodersen, S., Metzger, D.E., and Fernando, H.J.S. 1996a, “Flow Generated by Impingement of a Jet on a Rotating Surface: Part I – Basic Flow Patterns,” ASME J. Fluids Engineering, Vol.118, pp.61-67.
    [64] Brodersen, S., Metzger, D.E., and Fernando, H.J.S. 1996b, “Flow Generated by Impingement of a Jet on a Rotating Surface: Part II – Detailed Flow Structure and Analysis,” ASME J. Fluids Engineering, Vol.118, pp.68-73.
    [65] S.V. Garimella, R.A. Rice, “Confined and submerged liquid jet impingement heat transfer,” ASME J. Heat Transfer 117 (1995) 871-877.
    [66] J.A. Fitzgerald, S.V. Garimella, “A study of the flow field of a confined and submerged impinging jet,” Int. J. Heat Mass Transfer 41 (8-9) (1998) 1025-1034.
    [67] J.Y. San, C.H. Huang, M.H. Shu, “Impingement cooling of a confined circular air jet,” Int. J. Heat Mass Transfer 40 (6) (1997) 1355-1364.
    [68] R. Gardon, J.C. Akfirat, “Heat transfer characteristics of impinging two-dimensional air jets,”ASME J. Heat Trans¬fer 88 (1966) 101-108.
    [69] D.M. Kercher, W. Tabakoff, “Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air,” ASME J. Eng. Power 92(1970) 73-82.
    [70] D.E. Metzger, L.W. Florschuetz, D.I. Takeuchi, R.D. Behee, R.A. Berry, “Heat transfer characteristics for inlined and staggered arrays of circular jets with cross flow of spent air,” ASME J. Heat Transfer 101 (1979) 526-531.
    [71] L.W. Florschuetz, R.A. Berry, D.E. Metzger, “Periodic streamwise variations of heat transfer coefficient for inlined and staggered arrays of circular jets with cross flow of spent air,” ASME J. Heat Transfer 102(1980) 132-137.
    [72] L.W. Florschuetz, C.R. Truman, D.E. Metzger, “Streamwise flow and heat transfer distributions for jet array impingement with cross flow,” ASME J. Heat Transfer 103 (1981) 337-342.
    [73] L.W. Florschuetz, D.E. Metzger, C.C. Su, “Heat transfer characteristics for jet array impingement with initial cross flow,” ASME J. Heat Transfer 106 (1984) 34-41.
    [74] L.W. Florschuetz, Y. Isoda, “Flow distributions and discharge coefficient effects for jet array impingement with initial cross flow,” ASME J. Eng. Power 105 (1983) 296-303.
    [75] L.W. Floschuetz, H.H. Tseng, “Effect of non uniform geometries on flow distributions and heat transfer charac¬teristics for arrays of impinging jets,” ASME J. Eng. Gas Turbines and Power 107 (1985) 68-75.
    [76] L.W. Floschuetz, C.C. Su, “Effect of cross flow temperature on heat transfer within an array of impinging jets,” ASME J. Heat Transfer 109 (1987) 74-82.
    [77] A.I. Behbahani, “Local heat transfer to staggered arrays of impinging circular air jets,” ASME J. Eng. Power 105 (1983) 354-360.
    [78] R.J. Goldstein, J.F. Timmers, “Visualization of heat trans¬fer from arrays of impinging jets,” Int. J. Heat Mass Transfer 25 (12) (1982) 1857-1868.
    [79] S.J. Slayzak, R. Viskanta, F.P. Incropera, “Effect of interaction between adjacent free surface planar jets on local heat transfer from the impingement surface,” Int. J. Heat Mass Transfer 37 (2) (1994) 269-282.
    [80] A.M. Huber, R. Viskanta, “Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets,” Int. J. Heat Mass Transfer 37 (18) (1994) 2859-2869.
    [81] A.M. Huber, R. Viskanta, “Comparison of convective heat transfer to perimeter and center jets in a confined impinging array of axisymmetric air jets,” Int. J. Heat Mass Transfer 37 (18) (1994) 3025-3030.
    [82] Jung-Yang San, and Mao-De Lai, “Optimum Jet-to-Jet Spacing of Heat Transfer For Staggered Arrays of Impinging Air Jets”, Int. J. Heat Mass Transfer 44 (2001) 3997-4007.
    [83] X. Terry Yan and Yuvaraj Saravanan, 2004, “Numerical Analysis of Local Heat Transfer From a Flat Plate to a Pair of Circular Air Impinging Jets,” IMECE2004-61950, 2004 ASME International Mechanical Engineering Congress & Exposition, Anaheim, California, Nov.13-19.
    [84] Madhusudan Iyengar, Michael J. Ellsworth Jr., Robert E. Simons, and Levi A. Campbell, 2005, “Numerical Modeling of Jet Impingement And Validation of Convection –Conduction Decoupling In Thermal Design,” IPACK2005-73386, Proceedings of InterPACK’05, International Electronic Packaging Technical Conference and Exhibition, San Francisco, USA, July 17-22.
    [85] Vanderplaats, G. N., 1993, “Numerical Optimization Techniques for Engineering Design,” McGraw-Hill, Singapore.
    [86] Wu, C. F., and Hamada, M., 2000, “Experiments – Planning, Analysis, and Parameter Design Optimization,” John Wiley & Sons, New York.
    [87] Belegundu, A. D., and Chandrupatla, T. R., 1999, “Optimization Concepts and Applications in Engineering,” Prentice Hall, New Jersey.
    [88] Lee, S., 1995, “Optimum Design and Selection of Heat Sinks,” 11th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, California, Feb. 7-9, pp. 48-54.
    [89] Constans, E. W., Belegundu, A. D., and Kulkarni, A. K., 1994, “Optimization of a Pin-Fin Sink: A Design Tool,” 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, Nov. 6-11, EEP-Vol.9, pp. 25-32.
    [90] Azer, K., and Mandrone, C. D., 1994, “Effect of Pin Fin Density of the Thermal Performance of Unshrouded Pin Fin Heat Sinks,” ASME J. Electronic Packaging, Vol. 116, No. 4, pp. 306-309.
    [91] Shaukatullah, H., Storr, W. R., Hansen, B. J., and Gaynes, M. A., 1996, “Design
    and Optimization of Pin Fin Heat Sinks for Low Velocity Applications,” 12th IEEE SEMI-THERM Symposium, pp. 151-163.
    [92] Box, G. E. P., and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum Conditions,” J. Royal Statistics Society, Series B, No. 13, pp. 1-45.
    [93] Box, G. E. P., and Behnken, D. W., 1960, “Some New Three Level Designs for the Study of Quantitative Variables,” Technometrics, Vol. 2, pp.455-475.
    [94] Box, G. E. P., and Draper, N. R., 1987, “Empirical Model-Building and Response Surfaces,” John Wiley & Sons, New York.
    [95] Monthomery, D. C., 2001, “Design and Analysis of Experiments,” 5th Ed., John Wiley & Sons, New York.
    [96] Myers, G. N., and Montgomery, D. C., 2002, “Response Surface Methodology,” 2nd Ed,, John Wiley & Sons, New York.
    [97] Khuri, Andre I., Cornell, John A., 1996, “Response surfaces: designs and analyses,” second edition, Marcel Dekker.
    [98] R. W. Knight, and J. S. Gooding, “Optimal thermal design of forced convection heat sinks-analytical,” ASME J. Electron. Packag., vol. 113, pp. 313-321, 1991.
    [99] A. D. Kraus, and A. Bar-Cohen, “Design and Analysis of Heat Sinks,” New York: John Wiley and Sons, Inc., 1995.
    [100] S. Lee, “Optimum design and selection of heat sinks,” in Proc. 11th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 1995, pp. 48-54.
    [101] H. T. Chen, J. T. Horng, P. L. Chen, and Y. H. Hung, “Optimal design for PPF heat sinks in electronics cooling applications,” ASME J. Electron. Packag., vol. 126, pp. 410-422, Dec. 2004.
    [102] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representation by backpropagaion error, ” Nature, vol.323 (9), pp. 533-536, 1986.
    [103] S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system identification using neural network,” Int. J. Control, vol. 1(6), pp. 1191-1214, 1990.
    [104] J. Ilonen, J. K. Kamarainen and J. Lampinen, “Differential evolution training algorithm for feed-forward neural networks,” Neural Processing Letters, vol. 17, issue 1, pp.93-105, 2003.
    [105] A. A. Ilumoka, “Optimal transistor sizing for CMOS VLSI circuits using modular artificial neural networks,” in Proc. IEEE System Theory, West Hartford, CT., 1997.
    [106] K. Idir, L. Chang, and H. Dai, “Improved neural network model for induction motor design,” IEEE Trans. Magn., vol. 34(5), pp. 2948–2951, 1998.
    [107] S. Y. Han, and J. S. Maeng, “Shape optimization of cut-off in a multi-blade fan/scroll system using neural network,” Int. J. Heat Mass Transfer, vol. 46(5), pp. 2833–2839, 2003.
    [108] H. Hadim, and T. Suwa, “A multidisciplinary design and optimization methodology for ball grid array packages using artificial neural networks,” ASME J. Electron. Packag., vol. 127(3), pp.306-313, 2005.
    [109] K. Jambunathan, S. L. Hartle, S. Ashforth-Frost, and V. N. Fontama, “Evaluating convective heat transfer coefficients using neural networks,” Int. J. Heat Mass Transf., vol. 39(11), pp.2329-2332, 1996.
    [110] A. Pacheco-Vega, G. Diaz, M. Sen, K.T. Yang and R.L. McClain, “Heat Rate Predictions in humid Air-Water Heat Exchangers using correlations and neural networks,” ASME J. Heat Transfer, vol. 123(2), pp.348-354, 2001.
    [111] D. E. Goldberg, Genetic Algorithms in Search,“Optimization and Machine Learning,” Addison-Wesley, Reading, MA, 1989.
    [112] J. H. Holland, “Genetic algorithms,” Sci. Am., pp. 44-50, July 1992.
    [113] K. Krishnakumar, and D. E. Goldberg, “Control system optimization using geneic algorithms,” J. Guidance Control Synamics, vol. 15(3), pp. 735-740, 1992.
    [114]Chen H. T., Horng, J. T., Chen, P. L., and Hung, Y. H., 2004, “Optimal Design for PPF Heat Sinks in Electronics Cooling Applications,” ASME Journal of Electronic Packaging, Vol. 126, pp.410-422.
    [115] Chen, H. T., Chen, P. L., Horng, J. T., and Hung, Y. H., 2005, “Design Optimization for Pin-Fin Heat Sinks,” ASME Journal of Electronic Packaging, Vol.127, No.4, pp.397-406.
    [116] Wang, M. P., Chen, H. T., Horng, J. T., Wu, T. Y., Chen, P. L., and Hung, Y. H., 2005, “Thermal Optimal Design for Partially-Confined Compact Heat Sinks,” IPACK2005-73118, Proceedings of InterPACK’05, International Electronic Packaging Technical Conference and Exhibition, San Francisco, USA, July 17-22.
    [117] Wu, M. C., Peng, C. H., Lee, C. Y., Fang, C. J., and Hung, Y. H., 2005, “Optimal Design for Thermal Performance of a Heat Sink Integrated with Thermoelectric Cooler,” HT2005-72234, Proceedings of HT2005, 2005 ASME Summer Heat Transfer Conference, San Francisco, USA, July 17-22.
    [118] Horng, J. T., Chen, H. T., Chen, P. L., and Hung, Y. H., 2006, “Thermal Optimal Design for Parallel-Plain-Fin Heat Sinks by Using Neuro-Genetic Method,” Submitted to ASME Journal of Electronic Packaging, USA, March 10-12.
    [119] Chen, H. T., Chen, P. L., Horng, J. T., Chang, S. F., and Hung, Y. H., 2006, “Thermal Design Optimization for Strip-Fin Heat Sinks with a Ducted Air Flow,”Accepted by Itherm 2006, San Diego, CA, USA, May 30-June 2.
    [120] Lee , C. Y., Wu, M. C., Peng, C. H., Fang, C. J., and Hung, Y. H., “Optimal Approach with Genetic Algorithm for Thermal Performance of Heat Sink/TEC Assembly,”Accepted by Itherm 2006, San Diego, CA, USA, May 30-June 2.
    [121] Hung, Y. H., and Perng, S. W., 1988, “An Experimental Technique for Measuring Transient Natural/Forced-Convective Heat Fluxes in a Vertical Channel,” Exp. Therm. Fluid Sci., Vol.1, pp.305-313.
    [122] Hung, Y. H., and Shiau, W. M., 1989, “An Effective Model for Measuring Transient Natural Convection Heat Flux in Vertical Parallel Plates with a Rectangular Rib,” Int. J. Heat Mass Transfer, Vol.32, pp.863-871.
    [123] Lin, H. H., and Hung, Y. H., 1993, “Transient Forced Convection Heat Transfer in a Vertical Rib-Heated Channel Using a Turbulence Promoter,” Int. J. Heat Mass Transfer, Vol.36, pp.1553-1571.
    [124] Kline, S. J., and McClintock, F. A., 1953, “Describing the Uncertainties in Single Sample Experiments,” Mechanical Engineering, Vol.75, pp. 3-8
    [125] Moffat, R. J., 1988, “Describing the Uncertainties in Experimental Results,” Expl. Thermal Fluid Sci., Vol.1, pp.3-17.
    [126] Chou, Y. J., and Hung, Y. H., 1994, “Impingement Cooling of an Isothermally Heated Surface with a Confined Slot Jet,” ASME Journal of Heat Transfer, Vol.116, No.2, pp.479-482.
    [127] Churchill, S. W, and Usag, R., 1972, “A General Expression for the Correlation of Rates of Transfer and Other Phenomena,” AlChE Journal, Vol.18, No.6, pp.1121-1128.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE