研究生: |
范錠明 |
---|---|
論文名稱: |
New inroads into the catalytic site and the mechanism of methane oxidation in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by novel mass spectrometry |
指導教授: |
楊家銘
陳長謙 俞聖法 |
口試委員: |
楊家銘
陳長謙 俞聖法 陳仲瑄 韓肇中 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 質譜 、Particulate methane monooxygenase (pMMO) 、活性中心 、氧化甲烷 、反應機構 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) is a fascinating enzyme, which can mediate the facile and selective conversion of methane into methanol under ambient conditions. The enzyme is the best methane oxidizer in the nature. In contrast, it is extremely difficult to achieve the efficient conversion of methane into methanol in the laboratory because the C-H bond is very inert (the C-H bond energy is very high, 105 kcal/mol). For that reason, the search for a catalyst or process that can convert methane into methanol under mild conditions has been one of the holy grails of organic chemistry. Moreover, the chemical transformation has a great potential for industry since methanol is much more value-added than methane and the earth has a hug reserve of methane. Understanding the mechanism of methane oxidation in pMMO, therefore, has long been a goal of biochemist in searching for a new catalyst. Despite almost 30 years of extensive research on its biological function and crystal structures, unfortunately, the catalytic site and mechanism of methane oxidation in pMMO enzyme is still under debate.
In Part 1 (Chapter II) of this thesis, two suicide substrates, acetylene (HCCH) and propyne (CH3CCH), have been developed as mechanism-based probes of the catalytic site of methane oxidation within the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath). In addition, trifluoropropyne (CF3CCH) has been shown to be a non-competitive inhibitor of the enzyme. The oxidation of HCCH and CH3CCH by the enzyme is similar to that observed for a biomimetic tricopper complex that has been recently shown to be capable of mediating efficient methane oxidation under ambient conditions. Parallel experiments on the recombinant PmoB subunit anchored in membranes reveal no evidence of reactivity between HCCH (or CH3CCH) and the dicopper center when the latter is activated by O2 in presence of reductant. These results together with in-depth studies on the inhibition of the pMMO by the three alkynes together have culminated in (i) the identification of the hydroxylation site of the enzyme; (ii) the mapping of the substrate/product migration pathways during turnover; and (iii) the elucidation of the catalytic mechanism of methane oxidation. MALDI-TOF MS of the subunits of the chemically modified pMMO complexes together with LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the subunits reveal that the catalytic site of the alkane oxidation resides within the transmembrane domain of the protein. The pattern of chemical modification of the protein suggests the role of the transmembrane subunits (pmoA and pmoC) in controlling the substrate entrance and product exit during enzymatic turnover. These conclusions are corroborated by computer docking of the substrates and products to the protein fold provided by the X-ray crystal structures. Taken together, these results provide strong evidence that the catalytic site is indeed the tricopper cluster sequestered by the pmoA and pmoC subunits.
In Part 2 (Chapter III) of the thesis, I will present the development of nanodiamond particles in improving the mass spectrometric analysis of membrane proteins. This work came about from our original efforts to better characterize pMMO by using proteomic techniques. In fact, we have confirmed the exact molecular weights of pMMO’s subunits by nanodiamond-assisted MALDI-MS. The observed masses (46 kDa, 30 kDa, and 29 kDa) from the MALDI-MS analysis of intact pMMO complex have been assigned confidently to PmoB, PmoC and PmoC respectively. Moreover, we have extended the application of nanodiamond particles to enrich and purify other membrane proteins from highly contaminated buffers. We also demonstrated the outperformance of this approach, comparing to many other current methods, in preparing membrane proteins for both MALDI-MS analysis of membrane protein complexes and membrane protein digestion for “bottom-up” proteomics.
1. Olah, G. A., Goeppert, A., and Prakash, G. K. S. (2009) Beyond Oil and Gas: the Methanol Economy., Wiley-VCH, Weinheim.
2. Dry, M. E. (2004) Fischer-Tropsch Technology, Studies in Surface Science and Catalysis, Vol. 152, Elsevier, Amsterdam.
3. Arndtsen, B. A., Bergman, R. G., Mobley, T. A., and Peterson, T. H. (1995) Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution, Acc. Chem. Res. 28, 154–162.
4. Lipscomb, J. D. (1994) Biochemistry of the soluble methane monooxygenase, Annu. Rev. Microbiol. 48, 371-399.
5. Chan, S. I., and Yu, S. S.-F. (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: The case for a tricopper cluster, Acc. Chem. Res. 41, 969-979.
6. Friedle, S., Reisner, E., and Lippard, S. J. (2010) Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes, Chem. Soc. Rev. 39, 2768-2779.
7. Lieberman, R. L., and Rosenzweig, A. C. (2004) Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase, Crit. Rev. Biochem. Mol. Biol. 39, 147-164.
8. Jiang, H.-L., Tsumori, N., and Xu, Q. (2010) A Series of (6,6)-Connected Porous Lanthanide Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties, Inorg. Chem. 49, 10001-10006.
9. Culpepper, M. A., and Rosenzweig, A. C. (2012) Architecture and active site of particulate methane monooxygenase, Crit. Rev. Biochem. Mol. Biol. 47, 483-492.
10. Chan, S. I., Chen, K. H. C., Yu, S. S. F., Chen, C. L., and Kuo, S. S. J. (2004) Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria, Biochemistry 43, 4421-4430.
11. Smith, T. J., and Dalton, H. (2004) Biocatalysis by methane monooxygenase and its implications for the petroleum industry, Petroleum Biotechnology: Developments and Perspectives 151, 177-192.
12. Lee, S. J., McCormick, M. S., Lippard, S. J., and Cho, U.-S. (2013) Control of substrate access to the active site in methane monooxygenase, Nature 494, 380-384.
13. Martinho, M., Choi, D. W., DiSpirito, A. A., Antholine, W. E., Semrau, J. D., and Muenck, E. (2007) Mosssbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath): Evidence for a diiron center, J. Am. Chem. Soc. 129, 15783-15785.
14. Balasubramanian, R., Smith, S. M., Rawat, S., Yatsunyk, L. A., Stemmler, T. L., and Rosenzweig, A. C. (2010) Oxidation of methane by a biological dicopper centre, Nature 465, 115-U131.
15. Hanson, R. S., and Hanson, T. E. (1996) Methanotrophic bacteria, Microbiol Rev. 60, 439-471.
16. Murrell, J. C., McDonald, I. R., and Gilbert, B. (2000) Regulation of expression of methane monooxygenases by copper ions, Trends Microbiol. 8, 221-225.
17. Prior, S. D., and Dalton, H. (1985) The effect of copper ions onmembrane content and methane monooxygenase activity inmethanol-grown cells Methylococcus capsulatus(Bath), Microbiology 131, 155-163.
18. Semrau, J. D., Chistoserdov, A., Lebron, J., Costello, A., Davagnino, J., Kenna, E., Holmes, A. J., Finch, R., Murrell, J. C., and Lidstrom, M. E. (1995) Particulate methane monooxygenase genes in mathanotrophs, J. Bacteriol. 177, 3071-3079.
19. Ward, N., Larsen, Sakwa, J., Bruseth, L., Khouri, H., Durkin, A. S., Dimitrov, G., Jiang, L., Scanlan, D., Kang, K. H., Lewis, M., Nelson, K. E., Methé, B., Wu, M., Heidelberg, J. F., Paulsen, I. T., Fouts, D., Ravel, J., Tettelin, H., Ren, Q., Read, T., DeBoy, R. T., Seshadri, R., Salzberg, S. L., Jensen, H. B., Birkeland, N. K., Nelson, W. C., Dodson, R. J., Grindhaug, S. H., Holt, I., Eidhammer, I., Jonasen, I., Vanaken, S., Utterback, T., Feldblyum, T. V., Fraser, C. M., Lillehaug, J. R., and Eisen, J. A. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath), PLoS Biol. 2, 1616-1628.
20. Gilbert, B., McDonald, I. R., Finch, R., Stafford, G. P., Nielsen, A. K., and Murrell, J. C. (2000) Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs, Appl. Environ. Microbiol. 66, 966-975.
21. Stolyar, S., Costello, A. M., Peeples, T. L., and Lidstrom, M. E. (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus (Bath), Microbiology 145 ( Pt 5), 1235-1244.
22. Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C. (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related, FEMS Microbiol. Lett. 132, 203-208.
23. Lieberman, R. L., and Rosenzweig, A. C. (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane, Nature 434, 177-182.
24. Hakemian, A. S., Kondapalli, K. C., Telser, J., Hoffman, B. M., Stemmler, T. L., and Rosenzweig, A. C. (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b, Biochemistry 47, 6793-6801.
25. Smith, S. M., Rawat, S., Telser, J., Hoffman, B. M., Stemmler, T. L., and Rosenzweig, A. C. (2011) Crystal Structure and Characterization of Particulate Methane Monooxygenase from Methylocystis species Strain M, Biochemistry 50, 10231-10240.
26. Hakemian, A. S., and Rosenzweig, A. C. (2007) The biochemistry of methane oxidation, Annu. Rev. Biochem. 76, 223-241.
27. Nguyen, H. H. T., Elliott, S. J., Yip, J. H. K., and Chan, S. I. (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme - Isolation and characterization, J. Biol. Chem. 273, 7957-7966.
28. Yu, S. S. F., Chen, K. H. C., Tseng, M. Y. H., Wang, Y. S., Tseng, C. F., Chen, Y. J., Huang, D. S., and Chan, S. I. (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor, J. Bacteriol. 185, 5915-5924.
29. Zahn, J. A., and DiSpirito, A. A. (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath), J. Bacteriol. 178, 2726-2726.
30. Choi, D. W., Kunz, R. C., Boyd, E. S., Semrau, J. D., Antholine, W. E., Han, J. I., Zahn, J. A., Boyd, J. M., de la Mora, A. M., and DiSpirito, A. A. (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus (Bath), J. Bacteriol. 185, 5755-5764.
31. Nagababu, P., Maji, S., Kumar, M. P., Chen, P. P. Y., Yu, S. S. F., and Chan, S. I. (2012) Efficient room-temperature oxidation of hydrocarbons mediated by tricopper cluster complexes with different ligands, Adv. Synth. Catal. 354, 3275-3282.
32. Chan, S. I., Lu, Y.-J., Nagababu, P., Maji, S., Hung, M.-C., Lee, M. M., Hsu, I.-J., Pham Dinh, M., Lai, J. C.-H., Ng, K. Y., Ramalingam, S., Yu, S. S.-F., and Chan, M. K. (2013) Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters, Angew. Chem., Int. Ed. Engl. 52, 3731-3735.
33. Chan, S. I., Chien, C. Y. C., Yu, C. S. C., Nagababu, P., Maji, S., and Chen, P. P. Y. (2012) Efficient catalytic oxidation of hydrocarbons mediated by tricopper clusters under mild conditions, J. Catal. 293, 186-194.
34. Peter P.-Y. Chen, D. P. N., Steve S.-F. Yu, Sunney I. Chan. (2013) Development of the Tricopper Cluster as a Catalyst for the Efficient Conversion of Methane into MeOH, ChemCatChem, DOI: 10.1002/cctc.201300473.
35. Culpepper, M. A., Cutsail, G. E., III, Hoffman, B. M., and Rosenzweig, A. C. (2012) Evidence for Oxygen Binding at the Active Site of Particulate Methane Monooxygenase, J. Am. Chem. Soc. 134, 7640-7643.
36. Nguyen, H. H. T., Nakagawa, K. H., Hedman, B., Elliott, S. J., Lidstrom, M. E., Hodgson, K. O., and Chan, S. I. (1996) X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications, J. Am. Chem. Soc. 118, 12766-12776.
37. Chan, S. I., Wang, V. C. C., Lai, J. C. H., Yu, S. S. F., Chen, P. P. Y., Chen, K. H. C., Chen, C.-L., and Chan, M. K. (2007) Redox potentiometry studies of particulate methane monooxygenase: Support for a trinuclear copper cluster active site, Angew. Chem., Int. Ed. 46, 1992-1994.
38. Chen, P. P. Y., Yang, R. B. G., Lee, J. C. M., and Chan, S. I. (2007) Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene, Proc. Natl. Acad. Sci. U. S. A. 104, 14570-14575.
39. Yu, S. S. F., Ji, C.-Z., Wu, Y. P., Lee, T.-L., Lai, C.-H., Lin, S.-C., Yang, Z.-L., Wang, V. C. C., Chen, K. H. C., and Chan, S. I. (2007) The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (Bath) is a Cu(I) sponge, Biochemistry 46, 13762-13774.
40. Nguyen, H. H. T., Shiemke, A. K., Jacobs, S. J., Hales, B. J., Lidstrom, M. E., and Chan, S. I. (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus-Capsulatus (Bath), J. Biol. Chem. 269, 14995-15005.
41. Ng, K.-Y., Tu, L.-C., Wang, Y.-S., Chan, S. I., and Yu, S. S. F. (2008) Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation, Chembiochem 9, 1116-1123.
42. Baik, M. H., Newcomb, M., Friesner, R. A., and Lippard, S. J. (2003) Mechanistic studies on the hydroxylation of methane by methane monooxygenase, Chem. Rev. 103, 2385-2419.
43. Wilkinson, B., Zhu, M., Priestley, N. D., Nguyen, H. H. T., Morimoto, H., Williams, P. G., Chan, S. I., and Floss, H. G. (1996) A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 118, 921-922.
44. Yu, S. S. F., Wu, L. Y., Chen, K. H. C., Luo, W. I., Huang, D. S., and Chan, S. I. (2003) The stereospecific hydroxylation of 2,2-H-2(2) butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (bath), J. Biol. Chem. 278, 40658-40669.
45. Elliott, S. J., Zhu, M., Tso, L., Nguyen, H. H. T., Yip, J. H. K., and Chan, S. I. (1997) Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 119, 9949-9955.
46. Chen, K. H.-C., Chen, C.-L., Tseng, C.-F., Yu, S. S.-F., Ke, S.-C., Lee, J.-F., Nguyen, H.-H. T., Elliott, S. J., Alben, J. O., and Chan, S. I. (2004) The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath), J. Chin. Chem. Soc. 51, 1081-1098.
47. Chan, S. I., Nguyen, H.-H. T., Chen, K. H.-C., and Yu, S. S.-F. (2011) Overexpression and purification of the particulate methane monooxygenase from Methylococcus capsulatus (Bath), Methods Enzymol. 495, 177-193.
48. Prior, S. D., and Dalton, H. (1985) Acetylene as a suicide substrate and active-site probe for methane monooxygenase from Methylococcus capsulatus (Bath), FEMS Microbiol. Lett. 29, 105-109.
49. Cook, S. A., and Shiemke, A. K. (1996) Evidence that copper is a required cofactor for the membrane-bound form of methane monooxygenase, J. Inorg. Biochem. 63, 273-284.
50. Franzus, B., and Hudson, B. E. (1963) Structural determination of Cis-and Trans-1,3-Dibromocyclehexane, J. Org. Chem. 28, 2238-2244.
51. Hayashi, S., Furukawa, M., Fujino, Y., Sugita, M., and Nakao, T. (1971) Studies on Antitumor Substances .12. Synthesis of Bis(2,3-Epoxypropyl)Amine Derivatives and Reaction with Some Nucleophiles, Chem. Pharm. Bull. 19, 2003.
52. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc. 1, 2856-2860.
53. Savitski, M. M., Lemeer, S., Boesche, M., Lang, M., Mathieson, T., Bantscheff, M., and Kuster, B. (2011) Confident Phosphorylation Site Localization Using the Mascot Delta Score, Mol. Cell. Proteomics 10(2):M110.003830.
54. Zhang W., H. T., Schafmeister C., Ross W.S. and Case D.A. (2010) Leap and sleap. AmberTools User's Manual, version 1.3, 1 ed., http://ambermd.org/doc10/AmberTools.pdf.
55. Sanner, M. F. (1999) Python: A programming language for software integration and development, J. Mol. Graph Model. 17, 57-61.
56. Trott, O., and Olson, A. J. (2010) Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, J. Comput. Chem. 31, 455-461.
57. Shanno, D. F. (1970) Conditioning of Quasi-Newton Methods for Function Minimization, Math Comput. 24, 647.
58. Tidwell, T. T. (2006) Ketenes, John Wiley & Sons, Hoboken, NJ.
59. Tidwell, T. T. (2006) Ketene chemistry after 100 years: Ready for a new century, Eur. J. Org. Chem., 563-576.
60. Pritzkow, W., and Rao, T. S. S. (1985) Studies on the autoxidation of phenylacetylene, J. Prakt. Chem. 327, 887-892.
61. Paull, D. H., Weatherwax, A., and Lectka, T. (2009) Catalytic, asymmetric reactions of ketenes and ketene enolates, Tetrahedron 65, 6771-6803.
62. Myronova, N., Kitmitto, A., Collins, R. F., Miyaji, A., and Dalton, H. (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath), Biochemistry 45, 11905-11914.
63. Yildirim, M. A., Goh, K.-I., Cusick, M. E., Barabasi, A.-L., and Vidal, M. (2007) Drug-target network, Nat. Biotechnol. 25, 1119-1126.
64. Jeannot, M. A., Zheng, J., and Li, L. (1999) Observation of gel-induced protein modifications in sodium dodecylsulfate polyacrylamide gel electrophoresis and its implications for accurate molecular weight determination of gel-separated proteins by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (vol 10, pg 512, 1999), J. Am. Soc. Mass Spectrom. 10, 784-784.
65. Helbig, A. O., Heck, A. J. R., and Slijper, M. (2010) Exploring the membrane proteome-Challenges and analytical strategies, J Proteomics. 73, 868-878.
66. Savas, J. N., Stein, B. D., Wu, C. C., and Yates, J. R., III. (2011) Mass spectrometry accelerates membrane protein analysis, Trends Biochem. Sci. 36, 388-396.
67. Barrera, N. P., and Robinson, C. V. (2011) Advances in the Mass Spectrometry of Membrane Proteins: From Individual Proteins to Intact Complexes, Annu. Rev. Biochem. 80, 247-271.
68. Solis, N., and Cordwell, S. J. (2011) Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins, Proteomics 11, 3169-3189.
69. Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Methods 6, 359-U360.
70. Wu, C. C., and Yates, J. R. (2003) The application of mass spectrometry to membrane proteomics, Nat. Biotechnol. 21, 262-267.
71. Choksawangkarn, W., Edwards, N., Wang, Y., Gutierrez, P., and Fenselau, C. (2012) Comparative Study of Workflows Optimized for In-gel, In-solution, and On-filter Proteolysis in the Analysis of Plasma Membrane Proteins, J. Proteome Res. 11, 3030-3034.
72. Liebler, D. C., and Ham, A.-J. L. (2009) Spin filter-based sample preparation for shotgun proteomics, Nat Methods 6, 785-785.
73. Bereman, M. S., Egertson, J. D., and MacCoss, M. J. (2011) Comparison between procedures using SDS for shotgun proteomic analyses of complex samples, Proteomics 11, 2931-2935.
74. Han, C.-L., Chien, C.-W., Chen, W.-C., Chen, Y.-R., Wu, C.-P., Li, H., and Chen, Y.-J. (2008) A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease, Mol. Cell. Proteomics 7, 1983-1997.
75. Doucette, A., Craft, D., and Li, L. (2000) Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions, Anal. Chem. 72, 3355-3362.
76. Janecki, D. J., Broshears, W. C., and Reilly, J. P. (2004) Photoimmobilization of proteins for affinity capture combined with MALDI TOF MS analysis, Anal. Chem. 76, 6643-6650.
77. Zhou, H., Ning, Z., Wang, F., Seebun, D., and Figeys, D. (2011) Proteomic reactors and their applications in biology, Febs J. 278, 3796-3806.
78. Chiang, C.-K., Chen, W.-T., and Chang, H.-T. (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules, Chem. Soc. Rev. 40, 1269-1281.
79. Zhou, H., Wang, F., Wang, Y., Ning, Z., Hou, W., Wright, T. G., Sundaram, M., Zhong, S., Yao, Z., and Figeys, D. (2011) Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor, Mol. Cell. Proteomics 10,10.1074/mcp.O111.008425, 1–11, 2011.
80. Chen, W. H., Lee, S. C., Sabu, S., Fang, H. C., Chung, S. C., Han, C. C., and Chang, H. C. (2006) Solid-phase extraction and elution on diamond (SPEED): A fast and general platform for proteome analysis with mass spectrometry, Anal. Chem. 78, 4228-4234.
81. Wu, C. C., Han, C. C., and Chang, H. C. (2010) Applications of Surface-Functionalized Diamond Nanoparticles for Mass-Spectrometry-Based Proteomics, J. Chin. Chem. Soc. 57, 583-594.
82. Kong, X. L., Huang, L. C. L., Hsu, C. M., Chen, W. H., Han, C. C., and Chang, H. C. (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis, Anal. Chem. 77, 259-265.
83. Sabu, S., Yang, F.-C., Wang, Y.-S., Chen, W.-H., Chou, M.-I., Chang, H.-C., and Han, C.-C. (2007) Peptide analysis: Solid phase extraction-elution on diamond combined with atmospheric pressure matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry, Anal. Biochem. 367, 190-200.
84. Chang, C.-K., Wu, C.-C., Wang, Y.-S., and Chang, H.-C. (2008) Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles, Anal. Chem. 80, 3791-3797.
85. Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis, J. Proteome Res. 7, 731-740.
86. Chen, S.-H., Liao, H.-K., Chang, C.-Y., Ju, C.-G., Chen, J.-H., Chan, S. I., and Chen, Y.-J. (2007) Targeted protein quantitation and profiling using PVDF affinity probe and MALDI-TOF MS, Proteomics 7, 3038-3050.
87. Xu, Y. D., Bruening, M. L., and Watson, J. T. (2003) Non-specific, on-probe cleanup methods for MALDI-MS samples, Mass Spectrom. Rev. 22, 429-440.
88. Trimpin, S., and Deinzer, M. L. (2007) Solvent-free MALDI-MS for the analysis of a membrane protein via the mini ball mill approach: Case study of bacteriorhodopsin, Anal. Chem. 79, 71-78.
89. Chang, C. Y., Liao, H. K., Juo, C. G., Chen, S. H., and Chen, Y. J. (2006) Improved analysis of membrane protein by PVDF-aided, matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chim. Acta 556, 237-246.
90. Perevedentseva, E., Cai, P. J., Chiu, Y. C., and Cheng, C. L. (2011) Characterizing Protein Activities on the Lysozyme and Nanodiamond Complex Prepared for Bio Applications, Langmuir 27, 1085-1091.
91. Wang, H. D., Niu, C. H., Yang, Q. Q., and Badea, I. (2011) Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes, Nanotechnology 22, 145703-145713.
92. Lopez-Ferrer, D., Capelo, J. L., and Vazquez, J. (2005) Ultra fast trypsin digestion of proteins by high intensity focused ultrasound, J. Proteome Res. 4, 1569-1574.
93. Lill, J. R., Ingle, E. S., Liu, P. S., Pham, V., and Sandoval, W. N. (2007) Microwave-assisted proteomics, Mass Spectrom. Rev. 26, 657-671.
94. Lopez-Ferrer, D., Petritis, K., Hixson, K. K., Heibeck, T. H., Moore, R. J., Belov, M. E., Camp, D. G., II, and Smith, R. D. (2008) Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly, J. Proteome Res. 7, 3276-3281.
95. Proc, J. L., Kuzyk, M. A., Hardie, D. B., Yang, J., Smith, D. S., Jackson, A. M., Parker, C. E., and Borchers, C. H. (2010) A Quantitative Study of the Effects of Chaotropic Agents, Surfactants, and Solvents on the Digestion Efficiency of Human Plasma Proteins by Trypsin, J. Proteome Res. 9, 5422-5437.
96. Wu, F., Sun, D., Wang, N., Gong, Y., and Li, L. (2011) Comparison of surfactant-assisted shotgun methods using acid-labile surfactants and sodium dodecyl sulfate for membrane proteome analysis, Anal. Chim. Acta 698, 36-43.
97. Sun, D., Wang, N., and Li, L. (2012) Integrated SDS Removal and Peptide Separation by Strong-Cation Exchange Liquid Chromatography for SDS-Assisted Shotgun Proteome Analysis, J. Proteome Res. 11, 818-828.
98. Ye, X., and Li, L. (2012) Microwave-Assisted Protein Solubilization for Mass Spectrometry-Based Shotgun Proteome Analysis, Anal. Chem. 84, 6181-6191.