研究生: |
羅廷亞 Lo, Ting-Ya |
---|---|
論文名稱: |
Solvent Swelling Induced Self-assembly of Silicon-containing Block Copolymers |
指導教授: | 何榮銘 |
口試委員: |
陳信龍
何榮銘 蔡敬誠 孫亞賢 蔣酉旺 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 含矽嵌段共聚物 、自組裝 、選擇性溶劑 、奈米微結構 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Silicon-containing diblock copolymer, such as polystyrene-b-polydimethylsiloxane (PS-PDMS), possessing high density of Si in the backbone of PDMS provides extremely high etch contrast between constituted blocks under oxygen plasma treatment, which is advantageous for pattern transfer applications. Also, the strong segregation of PS-PDMS enables the formation of ordered structures with a smaller size.
Block copolymers (BCPs) can self-assemble into a variety of ordered nanostructures through microphase separation for different volume fraction. To acquire a variety of nanostructure would require to synthesis a series of BCPs with different volume fraction. In this study, a simple method to create a variety of nanostructures resulting from the self-assembly of one-composition block copolymer (BCP) was developed. By using selective solvents for PS-PDMS self-assembly, the phase behavior of intrinsic BCP system can be enriched due to the variation in constituted fraction through preferential swelling the microdomain by selective solvent. Most interestingly, the equilibrium phase of PS-PDMS/solvent mixtures can be successfully preserved after solvent evaporation. Namely, the microphase-separated morphologies of effective constituted volume fractions can be preserved. We speculate that the preservation is attributed to the high segregation strength of PS-PDMS. Consequently, by controlling the solvent selectivity, a variety of nanostructures from microphase separation can be obtained from a single-composition of BCP.
In contrast to the intrinsic phase of BCP (that is lamellae phase), these kinetically trapped phases are classified as metastable phases. Also, stable lamellae phase can be reformed by thermal annealing those metastable phases, further demonstrating the feasibility to control the metastability of the microphase-separated morphologies. Meanwhile, following the annealing process, phase transitions from gyroid to stable lamellae phase were well examined by using time-resolved SAXS profile combining with TEM results. As observed, we suggested a non-epitaxial phase transition behavior between gyroid phase and lamellae phase. Most interestingly, on the basis of electron tomographic results, a mesh-like structure between the gyroid and lamellae during phase transition can be found. As a result, new insights for the phase transition mechanism might be direcetly visualized.
1. Whitesides, G.M.; Grzybowski, B. Science 2002, 295, 2418.
2. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K.E.; Whitesides, G.M. J. Am. Chem. Soc. 2001,1234, 7677.
3. Jakubith, S.; Rotermund, H.H.; Engel, W; Von O.A.; Ertl, G.. Phys. Rev. Lett. 1990, 65, 3013.
4. Whiteside, G. M.; Ismagilov, R.F. Science 1999, 284, 89.
5. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
6. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
8. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
9. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
10. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
11. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
12. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
13. Alward, D.B.; Kinning, D.J.; Thomas, E.L.; and Fetters, L.J.; Macromolecules 1986, 19, 215
14. Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2009, 42, 7221.
15. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L., Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
16. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
17. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
18. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
19. Schoen, A. H. NASA TN D-5541, 1970.
20. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
21. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
22. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
23. Molau, G. E. In Block Polymers; Aggarwal, S. L., Ed.; Plenum Press: New York, 1970.
24. Bates, F. S.; Fredrickson, F. S. Annu. Rev. Phys. Chem. 1990, 41, 265
25. Leibler, L. Macromolecules 1980, 13, 1602.
26. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
27. Holden, G., Legge, N. R., Quirk, R., Schroeder, H. E., Eds.; Thermoplastic Elastomers, 2nd ed.; Hanser: Munich, 1996.
28. Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968
29. Krishnamoorti, R.; Silva, A. S.; Modi, M. A.; Hammouda, B Macromolecules 2000, 33, 3803.
30. Lee, H. H.; Jeong, W. Y.; Kim, J. K.; Ihn, K. J.; Kornfield, J. A.; Wang, Z. G.; Qi, S. Y. Macromolecules 2002, 35, 785
31. Pinna, M.; Zvelindovsky, A. V.; Todd, S.; Goldbeck-Wood, G. J. Chem. Phys. 2006, 125, 154905
32. Lyakhova, K. S.; Zvelindovsky, A. V.; Sevink, G. J. A. Macromolecules 2006, 39, 3024.
33. Vigild, M. E.; Almdal, K.; Mortensen, K.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J. Macromolecules 1998, 31, 5702
34. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
35. Eskimergen, R.; Mortensen, K.; Vigild, M. E. Macromolecules 2005, 38, 1286
36. Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997
37. Yu, B.; Li, B. H.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C.; J. Chem. Phys. 2005, 123
38. Honda, T.; Kawakatsu, T.; Macromolecules 2006, 39, 2340
39. Ly, D. Q.; Honda, T.; Kawakatsu, T.; Zvelindovsky, A. V.; Macromolecules 2007, 40, 2928
40. Pinna, M.; Zvelindovsky, A. V.; Soft Matter 2008, 4, 316
41. Nonomura, M.; Yamada, K.; Ohta, T.; J. Phys.: Condens. Matter 2003, 15, L423
42. Matsen, M. W.; Phys. Rev. Lett. 1998, 80, 4470
43. Schmidt, S. C.; Hillmyer, M. A. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2364
44. Sakamoto, N.; Hashimoto, T.; Macromolecules 1998, 31, 3292.
45. Chastek, T. Q.; Lodge, T. P.; Macromolecules 2003, 36, 7672.
46. Dair, B. J.; Avgeropoulos, A.; Hadjichristidis, N.; Capel, M.; Thomas, E. L.; Polymer 2000, 41, 6231.
47. Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
48. Koppi, K. A.; Tirrell, M.; Bates, F. S.; Almdal, K.; Mortensen, K.; J. Rheol. 1994, 38, 999.
49. Xu, T.; Zvelindovsky, A. V.; Sevink, G. J. A.; Gang, O.; Ocko, B.; Zhu, Y. Q.; Gido, S. P.; Russell, T. P. Macromolecules 2004, 37, 6980
50. Crossland, E. J. W.; Ludwigs, S.; Hillmyerd,M. A.; Steiner, U.; Soft Matter 2009, 6, 670
51. Schmidt, K.; Pester, C. W.; Schoberth, H. G.; Zettl, H. Macromolecules 2010, 43, 4268
52. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K.; Macromolecules 1997, 30, 3788.
53. Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K.; J. Phys. Chem. B 1998, 102, 1356.
54. Kim, G.; Libera, M.; Macromolecules 1998, 31, 2569
55. Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T.; Macromolecules 2000, 33, 9561.
56. Lodge, T.P.; Hamersky, M.W.; Janley, W.H.; Huang, C.I.; Macromolecules 1997, 30, 6139.
57. Hanley, J.K.; Lodge, T.P.; Huang, C.I.; Macromolecules 2000, 33, 5918.
58. Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T.; Polymer 1999, 40, 7147.
59. Yamauchi, K.; Takahashi, K.; Hasegawa, H.; Iatrou, H.; Hadjichristidis, N.; Kaneko, T.; Nishikawa, Y.; Jinnai, H.; Matsui, T.; Nishioka, H.; Shimizu, M.; Fukukawa, H.; Macromolecules 2003, 36, 6962.
60. Mareau, V. H.; Akasaka, S.; Osaka, T.; Hasegawa, H.; Macromolecules 2007, 40, 9032.
61. Penkzek, P.; Marko, M.; Buttle, K.; Frank, J.; Ultramicroscopy 1995, 60, 393.
62. Sugimori, H.; Nishi, T.; Jinnai, H.; Macromolecules 2005, 38, 10226.
63. Chen, I. -J.; Lindner, E. Langmuir 2007, 23, 3118.
64. Chan, V. Z. H.; Thomas, E. L.; Lee, V. L.; Miller, R. D.; Avgeropoulos, A.; Hadjichristidis, N. US Patent, Publication No:WO/00/02090.
65. Li, L.; Yokoyama, H. Angew. Chem. Int. Ed. 2006, 45, 6338.
66. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939.
67. Jung, Y. S.; Ross, C. A. Small 2009, 5, 1654.
68. Chan, V. Z. -H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thmas, E. L. Science 1997, 286, 1716.
69. Hirai, T.; Leolukman, M.; Liu, C. C.; Han, E.; Kim, Y. J.; Ishida, Y.; Hayakawa, T.; Kakimoto, M.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2009, 21, 4334.
70. Jung, Y. S.; Ross, C. A. Nano Lett.2007, 7, 2046
71. Chao, C.C.; Ho, R.M.; Georgopanos, P.; Avgeropoulos; A.; Thomas, E.L.; Soft Matter 2010, 6, 3582