簡易檢索 / 詳目顯示

研究生: 羅廷亞
Lo, Ting-Ya
論文名稱: Solvent Swelling Induced Self-assembly of Silicon-containing Block Copolymers
指導教授: 何榮銘
口試委員: 陳信龍
何榮銘
蔡敬誠
孫亞賢
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
中文關鍵詞: 含矽嵌段共聚物自組裝選擇性溶劑奈米微結構
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Silicon-containing diblock copolymer, such as polystyrene-b-polydimethylsiloxane (PS-PDMS), possessing high density of Si in the backbone of PDMS provides extremely high etch contrast between constituted blocks under oxygen plasma treatment, which is advantageous for pattern transfer applications. Also, the strong segregation of PS-PDMS enables the formation of ordered structures with a smaller size.
    Block copolymers (BCPs) can self-assemble into a variety of ordered nanostructures through microphase separation for different volume fraction. To acquire a variety of nanostructure would require to synthesis a series of BCPs with different volume fraction. In this study, a simple method to create a variety of nanostructures resulting from the self-assembly of one-composition block copolymer (BCP) was developed. By using selective solvents for PS-PDMS self-assembly, the phase behavior of intrinsic BCP system can be enriched due to the variation in constituted fraction through preferential swelling the microdomain by selective solvent. Most interestingly, the equilibrium phase of PS-PDMS/solvent mixtures can be successfully preserved after solvent evaporation. Namely, the microphase-separated morphologies of effective constituted volume fractions can be preserved. We speculate that the preservation is attributed to the high segregation strength of PS-PDMS. Consequently, by controlling the solvent selectivity, a variety of nanostructures from microphase separation can be obtained from a single-composition of BCP.
    In contrast to the intrinsic phase of BCP (that is lamellae phase), these kinetically trapped phases are classified as metastable phases. Also, stable lamellae phase can be reformed by thermal annealing those metastable phases, further demonstrating the feasibility to control the metastability of the microphase-separated morphologies. Meanwhile, following the annealing process, phase transitions from gyroid to stable lamellae phase were well examined by using time-resolved SAXS profile combining with TEM results. As observed, we suggested a non-epitaxial phase transition behavior between gyroid phase and lamellae phase. Most interestingly, on the basis of electron tomographic results, a mesh-like structure between the gyroid and lamellae during phase transition can be found. As a result, new insights for the phase transition mechanism might be direcetly visualized.


    Abstract I Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Self-assembly 1 1.1.1 Block Copolymer Self-assembly 4 1.2 Gyroid Phase from BCP Self-assembly 5 1.3 Phase Transition in BCPs 10 1.3.1 Thermal Induced Phase Transition 11 1.3.2 Shear Field Induced Phase Transition 12 1.3.3 Electric Field Induced Phase Transition 13 1.3.4 Solvent Evaporation Induced Phase Transition 14 1.3.5 Solvent selectivity Induced Phase Transition 17 1.4 Electron Tomography in Identification of Complex Structures 20 1.5 Silicon-containing BCPs 24 Chapter 2 Objectives 30 Chapter 3 Experimental 32 3.1 Materials 32 3.2 Sample Preparation 35 3.2.1 Sample Preparation for PS-PDMS BCP Bulk Samples 35 3.3 Instruments 36 3.3.1 Differential Scanning Calorimetry (DSC) 36 3.3.2 Transmission Electron Microscopy (TEM) 36 3.3.3 Electron Tomography(3D TEM) 36 3.3.4 Small-angle X-ray Scattering (SAXS) 37 3.3.5 Reactive Ion Etching (RIE) 38 3.3.6 Field-Emission Scanning Electron Microscopy (FESEM) 38 Chapter 4 Results and Discussion 39 4.1 Thermal Behavior of PS-PDMS BCP 39 4.2 PS-PDMS BCP Self-assembly 40 4.2.1 Intrinsic Phase of Self-assembled PS-PDMS 41 4.2.2 Effect of Evaporation Rate on PS-PMDS Self-assembly. 42 4.2.3 Effect of Solvent Selectivity on BCP Self-assembly 45 4.3 Order-order Phase Transitions Induced by Thermal Annealing 54 4.4 Examination of G→L through Electron Tomography 58 4.5 Transition Mechanism of PS-PDMS. 61 4.6 Inorganic Oxide Gyroid Template. 65 Chapter 5 Conclusions 67 Chapter 6 References 69 List of Tables Table 3-1. Characterization of PS-PDMS BCPs. 35 Table 4-1. Solubility parameters of solvents and corresponding morphologies from casting.. List of Figures Figure 1-1. Example of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micro meter sized metallic polyhedral folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces. 2 Figure 1-2. Example of dynamic self-assembly. (a)An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; (microtubules ~ 24nm in diameter) are colored red (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inchptri dish (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another viavortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is~2mm. 3 Figure 1-3. Schematic phase diagrams showing the various “classical” BCP morphologies adopted by non-crystalline linear diblock copolymer. The blue component represents the minority phase and the matrix, majority phase surrounds it. 5 Figure 1-4. TEM micrographs obtained from a starblock copolymer material comprised of PS-PI arms with 30 wt % PS. The majority PI appears black because it was stained with OsO4. Tilting the specimen in the TEM converted the square projection in (a) into the wagon-wheel arrangement in (b) 7 Figure 1-5. TEM micrograph of the tetrapod-network structure in PS-PI BCP toluene-casting film, the inset shows the enlarged area 8 Figure 1-6. A constant-thickness structure, based on the G surface, proposed as a possible model for the gyroid morphology at a minority component volume fraction of 0.33. The regime illustrated in this figure is the matrix; the two independent networks are depicted as the white/void regions. 10 Figure 1-7. (a) 2D scattering pattern and experimental setup with respect to the geometry of the electric field and the X-ray beam. (b) Scattering profiles in dependence of the applied electric field strength. The characteristic reflection for a gyroid structure (0kv/mm) and a cylindrical structure (9kv/mm) re indexed. The arrow indicates a new reflection at 0.8q* arising from an intermediate morphology.. 14 Figure 1-8. Plan-view bright-field TEM images of the as-cast OsO4-stained SBS thin films(brighter region refer to PS domain and darker region refer to PB domain) with inset Fourier transforms: (a) fast (~200 nL/s); (b) intermediate (~5 nL/s); (c) slow (~1.5nL/s); (d) very slow (~0.2 nL/s)... 15 Figure 1-9. Tapping mode AFM phase image of SBS triblock copolymer (brighter region refer to PB domain and darker region refer to PS domain): (a) cast from CCl4 solution (very fast) and cast from toluene solution at evaporation rate (b) 0.1 ml/h; (c) 0.01 ml/h; (d) 0.001 ml/h; (e) 0.00005 ml/h (thin region) (f) 0.00005 ml/h (thick region)... 16 Figure 1-10. Phase diagram for SI(11-21) as a function of temperature (T) and polymer volume fraction (ϕ) for solutions in DOP, DBP, DEP, and C14. Filled and open circles identify ODTs and OOTs, respectively. The dilute solution critical micelle temperature (cmt) is indicated by a filled square... 19 Figure 1-11. TEM micrographs and corresponding SAXS profile of P2VP-b-PI(26/74) diblock copolymer films prepared by solvent casting from (a) n-BtCl, (b) CCl4, (c) toluene, (d) benzene (e) THF, (f) CH2Cl2 and (g) 1,4-dioxane solutions.... 20 Figure 1-12. Visualization of a gyroid/PL grain boundary showing conservation of the orientation: (a) original portion of the TEM micrograph; (b) 3D visualization of the volume after binarization, hS and S are transparent; (c) 3D visualization after segmentation of the binarized volume; (d) and (e) visualization of each gyroid network clearly connected to one out of two layers of the PL phase.... 22 Figure 1-13. Demonstration of the effect of geometrical relationship between direction of tilt axis and orientation of cylindrical nanodomains on 3D reconstruction. There are three types of geometrical relationship. Each column shows a model, three cross sections of 3D reconstruction, and a “missing wedge” in Fourier space (shown by gray volume), from top to the bottom. The cylindrical nanodomains rotate around the tilt axis from -60° to 60° with 1° increment. Tilt axis is always along the x-direction. Electron beam comes from top (from the z-direction). An x-z cross section is a tomogram where the filtered back projection (FBP) is carried out. In the bottommost raw, diffraction patterns from the infinitely long cylinders are shown together with the missing wedge. Since the missing wedge is the volume in Fourier space where no projections can be sampled, diffraction spots within this wedge cannot contribute to the resulting 3D reconstruction..... 23 Figure 1-14. Comparison of missing volume in Fourier space between (a) dual-axis tomography and (b) single-axis tomography. Directions of tilt axes in the dual-axis tomography are along qx and qy axes. In single-axis tomography, tilt axis is along qx axis. Hexagonally packed infinitely long cylindrical morphology aligned along y-axis as shown in Figure 1.64b gives diffraction pattern only in the qx-qz plane. Some of the diffraction spots are outside the “missing pyramid”, and hence the cylinders can be reconstructed in dual-axis tomography (a), while all diffraction spots are inside the “missing wedge” in single-axis tomography (b)..... 24 Figure 1-15. Possible Mechanism of the Oxygen Plasma Oxidation of PDMS....... 25 Figure 1-16. An AFM image of surface topography of P(PMDSS)-DG after ozonolysis and UV exposure. The PI networks have been removed, resulting in the formation of ordered tortuous pathways within a silicon oxycarbide matrix. Bright regions are highest. Dark regions are empty. The maximum height on the image is 10 nm. (Inset) [012] view at zero height of a volume-rendered surface of the double gyroid structure with empty strut networks, which appear dark........ 27 Figure 1-18. SEM images of as cast (a) PS-PMAPOSS and (b) PMMA-PMAPOSS; solvent annealed (c) PS-PMAPOSS, and (d) PMMA-PMAPOSS; Oxygen RIE treated (e) PS-PMAPOSS and (f) PMMA-PMAPOSS films........ 28 Figure 1-19. SEM images of (a,b) parallel cylinders on trench substrates with narrow mesas (Wmesa ) 125 nm and Wtrench ) 875 nm) under a high vapor pressure of toluene (condition ER from Figure 3) and (c) perpendicular cylinders in a wide-mesa pattern (Wmesa ) 270 nm and Wtrench ) 730 nm) at a lower vapor pressure (condition Bâ). The annealing time was 15 h........ 29 Figure 3-1. Synthesis of the PS-b-PDMS copolymers 34 Figure 4-1. DSC thermograms of PS44-PDMS29 (fPDMSv = 0.4) BCPs in (a) high-temperature region and (b) low-temperature region.. 40 Figure 4-2. (a) TEM mass-thickness-contrast micrograph and (b) corresponding 1D SAXS profile of solution-cast PS-PDMS BCP after thermal annealing at 180oC for 12 hr. 42 Figure 4-3. TEM micrographs of PS-PDMS bulk sample casing from toluene solution with slow evaporation rate: (a) the (111) plane of double gyroid; (b) the (220) plane of double gyroid; (c) corresponding one-dimensional SAXS profile. 44 Figure 4-4. PS-PDMS bulk sample casing from toluene solution with fast-evaporation rate: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile. 45 Figure 4-5. PS-PDMS bulk sample casting from 1,2 dichloroethane solution: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile. 50 Figure 4-6. TEM micrograph of PS-PDMS bulk sample casting from 2 –chloropropane shows lamalle phase. 50 Figure 4-7. PS-PDMS bulk sample casting from chloroform solution: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile. 51 Figure 4-8. PS-PDMS bulk sample casting from chlorobenzene solution: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile 51 Figure 4-9. PS-PDMS bulk sample casting from 1,2-dichloroethane solution: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile 52 Figure 4-10. TEM micrograph of PS-PDMS bulk sample casting from: (a) dimethylaniliane solution and(b) 1,1,2-trichloroethane solution. 52 Figure 4-11. TEM micrograph of PS-PDMS bulk sample casting from methylcyclohexane solution 53 Figure 4-12. PS-PDMS bulk sample casting from hexane solution: (a) TEM micrograph; (b) corresponding one-dimensional SAXS profile 53 Figure 4-13. TEM micrographs of PS-PDMS bulk samples by using toluene as solvents for solution-casting: (a) before thermal annealing; (b) after thermal annealing at 180oC for 1min; (c) after thermal annealing at 180oC for 5min 56 Figure 4-14. SAXS profile of PS-PDMS bulk samples by using toluene as solvents for solution-casting: before thermal annealing (solid line); after thermal annealing at 180oC for 1min (dash line); after thermal annealing at 180oC for 5min (dash dot line). 57 Figure 4-15. (a) Time-resolved 1D SAXS profiles of PS-PDMS bulk samples by using toluene as solvent for solution casting (Annealing at 150oC for 40 minute collect data every 1 minute); (b) enlarged plot near the position of L(10); (c) enlarged plot near the position of L(30). 58 Figure 4-16. (a) Visualization of a gyroid/lamellae grain boundary: original portion of the TEM micrograph corresponding to the box area of (b) enlarged the red dashed line box area of 3D image in (a) for further study the mesh like nanostructure; (c) side view of the reconstructed mesh like nanostructure.. 59 Figure 4-17. The orthogonal digital slices of the reconstructed 3D images. (10 nm for the x-y section; 10 nm for the z-y section; 10 nm for the x-z section). 60 Figure 4-18. The orthogonal digital slices of reconstructed 3D images (10 nm for the x-y section). Blue one is the top layer of reconstructed 3D images; red one is the middle layer of reconstructed 3D images. Overlapping the two slices image, we will get an image which is similar to the 2D TEM image.. 61 Figure 4-19. Illustration of solvent and molecular chain model corresponding to the phase transition mechanism.. 64 Figure 4-20. Hypothesize of the phase transition mechanism.. 64 Figure 4-21. XPS spectra of (a) Si 2p; (b) O 1s and (c) C 1s of PS125-PDMS35 (fPDMSv = 0.25) and oxidized PS125-PDMS35 (fPDMSv = 0.25) thin films... 66 Figure 4-22. Top-view FESEM image of double gyroid SiOC, the (211) plane of gyroid phase with double-wave pattern can be clearly observed... 66

    1. Whitesides, G.M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K.E.; Whitesides, G.M. J. Am. Chem. Soc. 2001,1234, 7677.
    3. Jakubith, S.; Rotermund, H.H.; Engel, W; Von O.A.; Ertl, G.. Phys. Rev. Lett. 1990, 65, 3013.
    4. Whiteside, G. M.; Ismagilov, R.F. Science 1999, 284, 89.
    5. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    6. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    8. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    9. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
    10. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
    11. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
    12. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
    13. Alward, D.B.; Kinning, D.J.; Thomas, E.L.; and Fetters, L.J.; Macromolecules 1986, 19, 215
    14. Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2009, 42, 7221.
    15. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L., Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
    16. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    17. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    18. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    19. Schoen, A. H. NASA TN D-5541, 1970.
    20. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    21. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    22. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    23. Molau, G. E. In Block Polymers; Aggarwal, S. L., Ed.; Plenum Press: New York, 1970.
    24. Bates, F. S.; Fredrickson, F. S. Annu. Rev. Phys. Chem. 1990, 41, 265
    25. Leibler, L. Macromolecules 1980, 13, 1602.
    26. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    27. Holden, G., Legge, N. R., Quirk, R., Schroeder, H. E., Eds.; Thermoplastic Elastomers, 2nd ed.; Hanser: Munich, 1996.
    28. Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968
    29. Krishnamoorti, R.; Silva, A. S.; Modi, M. A.; Hammouda, B Macromolecules 2000, 33, 3803.
    30. Lee, H. H.; Jeong, W. Y.; Kim, J. K.; Ihn, K. J.; Kornfield, J. A.; Wang, Z. G.; Qi, S. Y. Macromolecules 2002, 35, 785
    31. Pinna, M.; Zvelindovsky, A. V.; Todd, S.; Goldbeck-Wood, G. J. Chem. Phys. 2006, 125, 154905
    32. Lyakhova, K. S.; Zvelindovsky, A. V.; Sevink, G. J. A. Macromolecules 2006, 39, 3024.
    33. Vigild, M. E.; Almdal, K.; Mortensen, K.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J. Macromolecules 1998, 31, 5702
    34. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
    35. Eskimergen, R.; Mortensen, K.; Vigild, M. E. Macromolecules 2005, 38, 1286
    36. Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997
    37. Yu, B.; Li, B. H.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C.; J. Chem. Phys. 2005, 123
    38. Honda, T.; Kawakatsu, T.; Macromolecules 2006, 39, 2340
    39. Ly, D. Q.; Honda, T.; Kawakatsu, T.; Zvelindovsky, A. V.; Macromolecules 2007, 40, 2928
    40. Pinna, M.; Zvelindovsky, A. V.; Soft Matter 2008, 4, 316
    41. Nonomura, M.; Yamada, K.; Ohta, T.; J. Phys.: Condens. Matter 2003, 15, L423
    42. Matsen, M. W.; Phys. Rev. Lett. 1998, 80, 4470
    43. Schmidt, S. C.; Hillmyer, M. A. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2364
    44. Sakamoto, N.; Hashimoto, T.; Macromolecules 1998, 31, 3292.
    45. Chastek, T. Q.; Lodge, T. P.; Macromolecules 2003, 36, 7672.
    46. Dair, B. J.; Avgeropoulos, A.; Hadjichristidis, N.; Capel, M.; Thomas, E. L.; Polymer 2000, 41, 6231.
    47. Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    48. Koppi, K. A.; Tirrell, M.; Bates, F. S.; Almdal, K.; Mortensen, K.; J. Rheol. 1994, 38, 999.
    49. Xu, T.; Zvelindovsky, A. V.; Sevink, G. J. A.; Gang, O.; Ocko, B.; Zhu, Y. Q.; Gido, S. P.; Russell, T. P. Macromolecules 2004, 37, 6980
    50. Crossland, E. J. W.; Ludwigs, S.; Hillmyerd,M. A.; Steiner, U.; Soft Matter 2009, 6, 670
    51. Schmidt, K.; Pester, C. W.; Schoberth, H. G.; Zettl, H. Macromolecules 2010, 43, 4268
    52. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K.; Macromolecules 1997, 30, 3788.
    53. Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K.; J. Phys. Chem. B 1998, 102, 1356.
    54. Kim, G.; Libera, M.; Macromolecules 1998, 31, 2569
    55. Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T.; Macromolecules 2000, 33, 9561.
    56. Lodge, T.P.; Hamersky, M.W.; Janley, W.H.; Huang, C.I.; Macromolecules 1997, 30, 6139.
    57. Hanley, J.K.; Lodge, T.P.; Huang, C.I.; Macromolecules 2000, 33, 5918.
    58. Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T.; Polymer 1999, 40, 7147.
    59. Yamauchi, K.; Takahashi, K.; Hasegawa, H.; Iatrou, H.; Hadjichristidis, N.; Kaneko, T.; Nishikawa, Y.; Jinnai, H.; Matsui, T.; Nishioka, H.; Shimizu, M.; Fukukawa, H.; Macromolecules 2003, 36, 6962.
    60. Mareau, V. H.; Akasaka, S.; Osaka, T.; Hasegawa, H.; Macromolecules 2007, 40, 9032.
    61. Penkzek, P.; Marko, M.; Buttle, K.; Frank, J.; Ultramicroscopy 1995, 60, 393.
    62. Sugimori, H.; Nishi, T.; Jinnai, H.; Macromolecules 2005, 38, 10226.
    63. Chen, I. -J.; Lindner, E. Langmuir 2007, 23, 3118.
    64. Chan, V. Z. H.; Thomas, E. L.; Lee, V. L.; Miller, R. D.; Avgeropoulos, A.; Hadjichristidis, N. US Patent, Publication No:WO/00/02090.
    65. Li, L.; Yokoyama, H. Angew. Chem. Int. Ed. 2006, 45, 6338.
    66. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939.
    67. Jung, Y. S.; Ross, C. A. Small 2009, 5, 1654.
    68. Chan, V. Z. -H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thmas, E. L. Science 1997, 286, 1716.
    69. Hirai, T.; Leolukman, M.; Liu, C. C.; Han, E.; Kim, Y. J.; Ishida, Y.; Hayakawa, T.; Kakimoto, M.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2009, 21, 4334.
    70. Jung, Y. S.; Ross, C. A. Nano Lett.2007, 7, 2046
    71. Chao, C.C.; Ho, R.M.; Georgopanos, P.; Avgeropoulos; A.; Thomas, E.L.; Soft Matter 2010, 6, 3582

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE