簡易檢索 / 詳目顯示

研究生: 王彰義
Wang, Chang-Yi
論文名稱: 捕捉於光子晶體光纖中低溫原子的數目及生命期之研究
Study of number and life time of cold atoms trapped in hollow-core photonic crystal fibers
指導教授: 余怡德
Yu, Ite A.
口試委員: 余怡德
施宙聰
江進福
劉怡維
陳應誠
陳泳帆
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 中空型光子晶體光纖低溫原子磁光陷阱光偶極位能阱
外文關鍵詞: hollow core photonic crystal fiber, cold atom, magneto-optical trap, optical dipole trap
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    This thesis reports the construction of the setup for trapping cold atoms with a hollow-core photonic crystal fiber (HC-PCF), and the development of measurement techniques for the number of the trapped atoms inside the HC-PCF core. We studied the optimization of capturing process of atoms and investigated the life time of the cold atoms confined in the center of the HC-PCF core.
    We used an optical dipole trap (ODT) to load and confine 2,000~3,000 cold atoms with a life time of about 20 ms in the HC-PCF center. A magneto-optical trap (MOT) produced a cloud of 2×107 cold atoms with a temperature of 110 μK right above a vertically positioned HC-PCF. A far red-detune laser beam was focused into the HC-PCF from the lower end and came out of the upper end to form the ODT which guided the cold atoms from the MOT into the fiber core continuously. Inside the HC-PCF, this laser beam also confined the cold atoms in the center without contacting the fiber wall.
    To study the loading process, we applied the optical pumping method and the absorption method for measuring the atom number captured in the HC-PCF and developed a theoretical model based on the Maxwell-Boltzman thermal distribution of the atom energy to verify the measurement results. Our study shows that the ability of capturing cold atoms is sensitive to the atom cloud position of the MOT and the shape and depth of the ODT potential outside the fiber. We also found that the captured atoms have a rapid-decay behavior which is sensitive to the atom temperature.
    With the current setup, we were able to trap 3,000 cold atoms resulting in an optical density (OD) of about 3 in the HC-PCF. Reducing the atom temperature to increase the life time of the captured atoms and employing a two-dimensional MOT to enhance the capture efficiency can further improve the atom number as well as the OD. We expect this system can become as a suitable platform for the interaction between few-photon pulses and atoms.


    摘要
    本論文報告以中空型光子晶體光纖(hollow-core photonic crystal fiber,簡稱HC-PCF)捕捉冷原子的系統架設,與發展HC-PCF內冷原子數的量測技術,並研究被捕捉原子數量的最佳化及原子的生命期(life time),探討影響生命期的因素。
    我們利用光偶極位能阱(optical dipole trap,簡稱ODT)導引並捕捉約2,000到3,000顆冷原子進入HC-PCF 的中空核心,並且將這些冷原子束縛在在核心內,被捕捉冷原子在核心內擁有約20 ms的衰減生命期。爲了提供能讓ODT 捕捉的冷原子,首先以磁光陷阱(magneto-optical trap)聚集並維持一團冷原子雲在一條垂直置放的HC-PCF端口附近,此團冷原子的數量約為2×107 顆,溫度約110 μK。一道遠紅調變雷射光束自底端耦合進入HC-PCF,當它自頂端向外輸出時在HC-PCF 端口組成與磁光陷阱交會的光偶極位能阱;此位能阱自磁光陷阱製備的冷原子團中導引了一部分的冷原子進入HC-PCF,構成一個連續性的導引捕捉冷原子系統。在HC-CPF內部,此雷射光同時將冷原子束縛在核心軸線附近,避免冷原子撞上核心內壁而損失。
    爲了瞭解被捕捉冷原子的行為,我們採用光抽運法和光吸收法兩種探測機制,來量測被捕捉原子數目,同時以馬克斯威爾-波茲曼分佈為基礎建立了冷原子在HC-PCF 內部的分佈模型,驗證量測結果。量測呈現的結果中,我們可以看到目前的捕捉能力對冷原子團位置,光偶極位能阱雷射光形狀與深度相當敏感;而被捕捉原子的損耗機制方面,則被冷原子溫度強烈影響。
    目前這套系統能夠捕捉3,000 顆冷原子,在HC-PCH內部產生相當於3的光學密度(optical density)。爲了增加被捕捉原子的數量和對應的光學密度,進一步降低冷原子溫度來增加被捕捉原子在HC-PCF內的生命期,及架設2 維磁光陷阱取代現存的3 維磁光陷阱以獲得更好的捕捉能力,是可能的改進方向。我們希望未來這套系統能夠作為極少光子與原子交互作用的平台。

    摘要 目錄 第1章 簡介 1.1 前言 5 1.2 論文總覽 6 第2章 冷原子製備原理 2.1 磁光陷阱 8 2.2 光偶極陷阱 9 2.3 偏極梯度冷卻 11 第3章 實驗系統 3.1 真空系統 15 3.1.1 真空腔主體與玻璃腔 15 3.1.2 中空型光子晶體光纖 16 3.2 磁光陷阱雷射系統 19 3.2.1 外共振腔雷射 19 3.2.2 探測雷射 20 3.2.3 陷阱雷射 24 3.2.4 光放大器系統 24 3.2.5 幫浦雷射 26 3.3 光偶極陷阱雷射系統 26 3.3.1外共振腔雷射 26 3.3.2 光放大器系統 28 3.4 磁場線圈 28 3.4.1 磁光陷阱的反亥姆霍茲線圈 28 3.4.2地磁補償線圈 28 3.5 濾光片 29 3.5.1 純化光偶極陷阱光的頻率成份 29 3.5.2 探測光訊號的背景雜訊過濾 29 3.6 本章結論 30 第4章 捕捉原子與量測技術 4.1製備冷原子 42 4.2 原子捕捉機制 43 4.2.1 間歇性捕捉機制 44 4.2.2 連續性捕捉機制 46 4.3原子捕捉步驟 46 4.3.1間歇性捕捉 46 4.3.2 連續性捕捉 48 4.3.3 討論 48 4.4 量測原子數-光抽運法 49 4.4.1系統設置 50 4.4.2 實驗結果 52 4.5 量測原子數-光吸收法 54 4.5.1系統設置 55 4.5.2 實驗結果 56 4.6本章結論 57 第5章 數據分析與討論 5.1 中空型光子晶體光纖內部的原子分佈模型 65 5.2 被捕捉原子的量測結果 67 5.2.1光抽運法的實驗數據分析 67 5.2.1光吸收法的實驗數據分析 70 5.3 原子捕捉能力的優化 71 5.4 原子損耗機制 73 5.4.1 原子損耗對捕捉能力的限制 73 5.4.2 光模態缺陷的影響 73 5.4.3 原子碰撞與壓力 74 5.4.4 原子溫度的敏感性 77 5.5本章結論 78 第6章 展望 6.1 2維磁光陷阱 87 6.2 強化光偶極陷阱 88 6.3 超冷原子溫度的製備 88 6.4 本章結論 89 第7章 總結 91 參考資料 92 附錄1光纖內的螢光光強對光抽運訊號的影響 附錄2 實驗時序控制

    [1] M. J. Renn, D. Montgomery and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253 (1995).
    [2] R. F. Cregan, B. J. Mangan and P. St. J. Russel, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 5433, 1537 (1999).
    [3] P. S. Light, F. Benabid, F. Couny, M. Maric. and A. N. Luiten. “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323 (2007).
    [4] S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic Desorption,” Phys. Rev. A 67, 053401 (2003).
    [5] M. Bajcsy, S. Hofferberth and M. D. Lukin, “Efficient all-optical switching using slow ight within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [6] E. L.Raab, M.Prentiss, A. Cable, S. Chu, and D.E.Prichard,”Trapping of Neutral Sodium Atoms with Radition Pressure,” Phys. Rev. Lett. 59, 2631 (1987).
    [7] C. J. Foot, “Lasr cooling and trapping of atoms,” Contemp. Phys. 32, 369 (1991).
    [8] R. Grimm, M. Weidemler, and Y.B.Ovchinnikov, “Optical Dipole Traps for Neutral Atoms,” Adv. At. Mol. Opt. Phys. 42, 95 (2000).
    [9] J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients︰simple theoretical models,” J. Opt. Soc. Am. B 6, 2023 (1989).
    [10] J. C. Lai, “Development and study of Polarization Gradient Cooling,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (1998).
    [11] J. Ye, S. Swartz, P. Jungner, and J. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3╱2 state,” Opt. Lett. 21, 1280 (1996).
    [12] G. Barwood, P. Gill, and W. Rowley, “Frequency measurements and optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142 (1991).
    [13] S. Bize, Y. Sortais, M. S. Santors, C. Mandache, A. Clairon, and C. Salomon, “High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain,” Europhys. Lett. 45, 558 (1999).
    [14] J. F. O’Hanlon, “A user’s guide to vacuum technology,” Wiley (1989).
    [15] A. Roth. “Vacuum Technology,” North-Holland (1990).
    [16] T. A. Delchar, “Vacuum physics and techniques,” Chapman & Hall (1993).
    [17] C. A. Christensen, S. Will, W. Ketterle and D. Pritchard, “Trapping of ultracold atoms in a hollow-core photonic crystal fiber,” Phys. Rev. A 78, 033429 (2008).
    [18] B. H. Wu, “Capture cold atoms in hollow-core photonic-crystal fibers,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2009).
    [19] Z. H. Tsai, “Effects of elongation and compression of the magneto-optical trap,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2004).
    [20] C. L. Hsu, “Development and characterization of a master-oscillator- power-ampification system for the realization of Bose-Einstein condensation,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (1999).
    [21] Y. H. Chen, “Realization of Bose-Einstein Condensation,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2006).
    [22] M. Bajcsy, Ph.D. theses, “Novel systems and techniques for nonlinear oprics at low light level,” Department of Physics, Harvard university (2010).
    [23] M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
    [24] Y. C. Chen, Y. A. Liao, L. Hsu, and I. A. Yu, “Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap,” Phys. Rev. A 64, 031401(R) (2001).
    [25] M. O. Scully and M. S. Zubairy, “Quantum Optics,” (Cambridge university Press, Cambridge, 1997), sec. 5.3.2 and Eq. (17.1.20).
    [26] L. Y. Lin, “Study of three-body recombination decay in Bose condensates by the optical pumping method,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2010).
    [27] W. Palosz, “Residual gas in closed systems. I. Development of gas in fused silica ampoules,” J. Crystal Growth 267, 475 (2004).
    [28] A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527 (1981), Eq. 8.
    [29] H. C. Chien, “Evaporatively cooling 87Rb atoms to sub-μK,” Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE