研究生: |
劉晏承 Liu, Yan-Cheng |
---|---|
論文名稱: |
CMOS電容式微型懸臂樑紅外線感測器之開發 Development of CMOS Capacitive Microcantilever Infrared Sensors |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
方維倫
Fang, Wei-Leun 鄭裕庭 Cheng, Yu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 紅外線 、電容式 、雙層材料 |
外文關鍵詞: | Bimorph |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以標準CMOS製程製作了一個紅外線焦平面熱感測陣列,並以電容式雙層材料懸臂樑作為感熱元件,其感測原理為利用感熱結構將吸收紅外線熱輻射所產生之溫度變化轉換為電容變化。有別於其他常見的紅外線熱感測器,本研究期望在感熱結構製作上省去了額外的沉積,做出一個高響應度高偵測度的感測陣列,以此驗證電容式雙層材料懸臂樑作為感熱元件的高度發展性。
本研究使用 TSMC 2P4M 0.35 μm 製程,製作了16 × 16紅外線感測器陣列,透過讀取電路的設計將電容受到熱輻射所產生的溫度變化轉換為輸出電壓。在結構方面利用金屬濕蝕刻、反應離子蝕刻定義了感熱元件結構形狀。經量測後得到電容溫度係數為1.66%/K,感測器的熱時間常數6.4 ms,而響應度與雜訊等效功率(NEP)則分別為1.4 × 106 V/W以及1.57 pW/Hz1/2。
In this study, an infrared focal plane array was fabricated with a standard CMOS process, and the capacitive bimorph cantilevers were used as sensing elements. The sensing principle relies on converting the temperature variation generated by absorbing infrared radiation into a change in capacitance. Distinguished from other common infrared sensors, this research aims to eliminate additional deposition in fabrication of the thermal sensing structure and achieve a high responsivity and detection for the sensing array. This serves to validate the high development potential of the capacitive bimorph cantilver as a thermal sensing element.
In this study, the TSMC 2P4M 0.35 μm process was used to fabricate an 16 × 16 infrared sensors array. The variation in capacitance with temperature by infrared radiation was converted into output voltage through a readout circuit. In terms of structure, the shape of the thermal sensing element was defined using metal wet etching and reactive ion etching. The measured temperature coefficient of capacitance (TCC) is 1.66%/K. The thermal time constanct is 6.4ms, and responsivity and noise equivalent power (NEP) can respectively reach 1.4 × 106 V/W and 1.57 pW/Hz1/2 .
[1] H. K. Xie, and G. K. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS Gyroscope,” IEEE Sensors J., vol. 3, no. 5, pp. 622-631, Oct, 2003.
[2] M. H. Tsai, Y. C. Liu, and W. L. Fang, “A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes,” J. of Microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Dec, 2012.
[3] J. J. Neumann, and K. J. Gabriel, “A fully-integrated CMOS-MEMS audio microphone,” Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, pp. 230-233, 2003.
[4] N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei, and K. Machida, “Novel surface structure and its fabrication process for MEMS fingerprint sensor,” IEEE Trans. on Elec. Dev., vol. 52, no. 5, pp. 1026-1032, May, 2005.
[5] H. H. Tsai, C. F. Lin, Y. Z. Juang, I. L. Wang, Y. C. Lin, R. L. Wang, and H. Y. Lin, “Multiple type biosensors fabricated using the CMOS BioMEMS platform,” Sensors and Actuators B-Chemical, vol. 144, no. 2, pp. 407-412, Feb 17, 2010.
[6] M. Kimata, “Uncooled infrared focal plane arrays,” IEEJ Trans. on Electrical and Electronic Engineering, vol. 13, no. 1, pp. 4-12, Jan, 2018.
[7] F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays - A review,” MEMS/MOEMS Technologies and Applications Iii, vol. 6836, 2008.
[8] T. Ishikawa, M. Ueno, K. Endo, Y. Nakaki, H. Hata, T. Sone, and M. Kimata, “Low-cost 320 × 240 uncooled IRFPA using conventional silicon IC process,” Proc. of SPIE., vol. 3698, pp. 556-564, Jul,1999.
[9] N. Shen, Z. Tang, J. Yu, and Z. Huang, “A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process,” J. of Semiconductors., 2014, 35, 034014.
[10] M. V. Mansi, M. Brookfield, S. G. Porter, I. Edwards, B. Bold, J. Shannon, P. Lambkin, and A. Mathewson, “AUTHENTIC:A very low-cost infrared detector and camera system,” Proc. of SPIE., vol. 4820, pp. 227–238 Jul. 2002.
[11] X. Cao, M. Luo, W. Si, F. Yan, and X. Ji, "Design of microbolometer by polycrystalline silicon in standard CMOS technology," In Proceedings of the China Semiconductor Technology International Conference, Shanghai, China, pp. 18–19 Mar. 2019.
[12] Y. H. Han, I. H. Choi, H. K. Kang, J. Y. Park, K. T. Kim, H. J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, no. 1-2, pp. 260-264, Feb 3, 2003.
[13] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sensors and Actuators a-Physical, vol. 109, no. 1-2, pp. 102-113, Dec 1, 2003.
[14] F. Haenschke, E. Kessler, U. Dillner, A. Ihring, U. Schinkel, and H. G. Meyer, “A new high detectivity room temperature linear thermopile array with a D* greater than 2 x 109 cmHz1/2/W based on organic membranes,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 19, no. 12, pp. 1927-1933, Dec, 2013.
[15] H. C. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, “Cmos-based thermopiles using vertically integrated double polycrystalline silicon layers,” 26th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2013), pp. 429-432, 2013.
[16] G. Milde, C. Hausler, G. Gerlach, H. A. Bahr, and H. Balke, “3-D modeling of pyroelectric sensor arrays part II: modulation transfer function,” IEEE Sensors J., vol. 8, no. 11-12, pp. 2088-2094, Nov-Dec, 2008.
[17] J. Yun, and S. S. Lee, “Human movement detection and identification using pyroelectric infrared sensors,” Sensors, vol. 14, no. 5, pp. 8057-8081, May, 2014.
[18] T. D. Binnie, H. J. Weller, Z. Q. He, and D. Setiadi, “An integrated 16 x 16 PVDF pyroelectric sensor array,” IEEE Trans. on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, no. 6, pp. 1413-1420, Nov, 2000.
[19] L. Dong, R. F. Yue, and L. T. Liu, “Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements,” J. of Microelectromech. Syst., vol. 14, no. 5, pp. 1167-1177, Oct, 2005.
[20] A. Zviagintsev, T. Blank, I. Brouk, S. Bar-Lev, S. Stolyarova, A. Svetlitza, I. Bloom, A. Nemirovsky, and Y. Nemirovsky, “Micro-machined CMOS-SOI transistor (TMOS) thermal sensor operating in air,” 2017 IEEE Int. Conf. on Microwaves, Antennas, Communications and Electronic Systems (Comcas), pp. 350-353, 2017.
[21] T. Blank, I. Brouk, S. Bar-Lev, G. Amar, E. Meimoun, S. Bouscher, M. Meltsin, M. Vaiana, A. Maierna, M. E. Castagna, G. Bruno, and Y. Nemirovsky, “Non-imaging digital CMOS-SOI-MEMS uncooled passive infra-red sensing systems,” IEEE Sensors J., vol. 21, no. 3, pp. 3660-3668, Feb 1, 2021.
[22] L. Gitelman, S. Stolyarova, S. Bar-Lev, Z. Gutman, Y. Ochana, and Y. Nemirovsky, “CMOS-SOI-MEMS transistor for uncooled IR imaging,” IEEE Trans. on Elec. Dev., vol. 56, no. 9, pp. 1935-1942, Sep, 2009.
[23] A. Zviagintsev, T. Blank, I. Brouk, I. Bloom, and Y. Nemirovsky, “Modeling the performance of nano machined CMOS transistors for uncooled IR sensing,” IEEE Trans. on Elec. Dev., vol. 64, no. 11, pp. 4657-4663, Nov, 2017.
[24] E. Socher, S. M. Beer, and Y. Nemirovsky, “Temperature sensitivity of SOI-CMOS transistors for use in uncooled thermal sensing,” IEEE Trans. on Elec. Dev., vol. 52, no. 12, pp. 2784-2790, Dec, 2005.
[25] T. Saraf, I. Brouk, S. B. L. Shefi, A. Unikovsky, T. Blank, P. K. Radhakrishnan, and Y. Nemirovsky, “CMOS-SOI-MEMS uncooled infrared security sensor with integrated readout,” IEEE J. of the Elec. Dev. Soc., vol. 4, no. 3, pp. 155-162, May, 2016.
[26] S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. S. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High sensitivity uncooled microcantilever infrared imaging arrays,” Proc. of SPIE., vol. 5074, pp. 469–480. Oct. 2003.
[27] S. R. Hunter, G. S. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. of SPIE., vol. 6542, pp. 1-13. May. 2007.
[28] S. R. Hunter, G. S. Maurer, G. Simelgor, S. Radhakrishnan, J. Gray, K. Bachir, T. Pennell, M. Bauer, U, Jagadish, “Development and optimization of microcantilever based IR imaging arrays,” Proc. of SPIE., vol. 6940, pp. 1-12. Apr. 2008.
[29] U. Adiyan, F. Civitci, O. Ferhanoğlu, H. Torun, H. Urey, “A 35-μm Pitch IR Thermo-Mechanical MEMS Sensor With AC-Coupled Optical Readout, ” IEEE J. Sel. Top. Quantum Electron., vol. 21, no 4, July, 2015.
[30] Y. Zhao,M. Mao,R. Horowitz,A. Majumdar,J. Varesi,P. Norton, J. Kitching, “Optomechanical uncooled infrared imaging system:design, microfabrication, and performance,” J. of Microelectromech. Syst., vol. 11, no. 2, pp. 136–146, Apr. 2002
[31] M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermo-mechanical detector array: Design, fabrication and testing,” Sens. Actuators A, Phys., vol. 156, no. 1, pp. 88–94, Nov. 2009.
[32] P. G. Datskos, P. L. Oden, T. Thundat, E. A. Wachter , R. J. Warmack, S. R. Hunter, “Development and optimization of microcantilever based IR imaging arrays,” Appl. Phys. Lett., no. 69, pp. 2986-2988. Nov. 1996.
[33] H. Jerominek, M. Renaud, N. R. Swart, F. Picard, T. D. Pope, M. Levesque, M. Lehoux, G. Bilodeau, M. Pelletier, D. Audet, and P. Lambert, “Micromachined VO2-based uncooled IR bolometric detector arrays with integrated CMOS readout electronics,” Micromachined Dev. and Components Ii, vol. 2882, pp. 111-121, 1996.
[34] C. Minassian, J. L. Tissot, M. Vilain, O. Legras, S. Tinnes, B. Fieque, J. M. Chiappa, and P. Robert, “Uncooled amorphous silicon TEC-less 1/4 VGA IRFPA with 25 pixel-pitch for high volume applications,” Infrared Technology and Applications Xxxiv, Pts 1 and 2, vol. 6940, 2008.
[35] T. W. Shen, K. C. Chang, C. M. Sun, and W. L. Fang, “Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design,” J. of Micromech. and Microeng., vol. 29, no. 2, Feb, 2019.
[36] H. Jerominek, M. Renaud, N. R. Swart, F. Picard, T. D. Pope, M. Levesque, M. Lehoux, G. Bilodeau, M. Pelletier, D. Audet, and P. Lambert, “Micromachined VO2-based uncooled IR bolometric detector arrays with integrated CMOS readout electronics,” Micromachined Dev. and Components Ii, vol. 2882, pp. 111-121, 1996.
[37] F. Tankut, M. H. Cologlu, H. Askar, H. Ozturk, H. K. Dumanli, F. Oruc, B. Tilkioglu, B. Ugur, O. S. Akar, M. Tepegoz, and T. Akin, “An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology,” Infrared Technology and Applications Xliii, vol. 10177, 2017.
[38] X. J. Xue, H. Xiong, Z. Song, Y. X. Du, D. Wu, L. Y. Pan, and Z. Y. Wang, “Silicon diode uncooled FPA with three-dimensional integrated CMOS readout circuits,” IEEE Sensors J., vol. 19, no. 2, pp. 426-434, Jan 15, 2019.
[39] D. S. Tezcan, S. Eminoglu, and T. Akin, “A low-cost uncooled infrared microbolometer detector in standard CMOS technology,” IEEE Trans. on Elec. Dev., vol. 50, no. 2, pp. 494-502, Feb, 2003.
[40] I. W. Kwon, J. E. Kim, C. H. Hwang, T. S. Kim, Y. S. Lee, H. C. Lee, “A high fill-factor uncooled infrared detector with thermomechanical bimaterial structure,” Proc. of SPIE., vol. 6542, 2007.
[41] W. Wang, V. Upadhyay, C. Munoz, J. Bumgarner, and O. Edwards, “FEA simulation, design and fabrication of uncooled MEMS capacitive thermal detector for infrared FPA imaging,” Proc. of SPIE., vol. 6206, 2006.
[42] G. Siebke, K. Gerngroß, P. Holik, S. Schmitz, M. Rohloff, S. Tätzner, and S. Steltenkamp, “An uncooled capacitive sensor for IR detection,” Proc. of SPIE., vol. 9070, 2014.