簡易檢索 / 詳目顯示

研究生: 陳奕璋
Chen, Yi-Chang
論文名稱: 四元靶-濺鍍製程之銅銦鎵硒薄膜性質之研究
Study of CIGS thin films sputtered from a single quaternary-CIGS target
指導教授: 賴志煌
Lai, Chih-Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 98
中文關鍵詞: 銅銦鎵硒薄膜太陽能電池二次相四元靶濺鍍
外文關鍵詞: CIGS thin-film solar cell, Second phase, quaternary target, sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis we developed sputtering process of CIGS absorber layers using a single quaternary-CIGS target. CIGS films were prepared without post-selenization by one-step RF sputtering at different substrate temperature. Additionally, a series of analysis on CIGS films was performed.
    Two kinds of quaternary-CIGS targets with different composition were used in this thesis. One is copper-rich and the other is copper-poor. (The composition ratio of the copper-rich is Cu: 22.7 %, In: 18.2 %, Ga: 8.1 %, Se: 51.0 % and the composition ratio of the copper-poor is Cu: 18.0 %, In: 18.2 %, Ga: 8.1 %, Se: 55.7 %.) To investigate properties of CIGS films, it was observed that second phases of copper selenide and indium selenide occurred during fabrication of CIGS films. The copper-selenide phase is conductive and a leakage-current path in CIGS films. Hence we altered the 22%-Cu target into the 18%-Cu target in order to suppress the formation of Cu-Se phases.
    Finally, the efficiency of 4.04% was achieved and the effective area up to 0.2 cm2. The CIGS solar cell fabricated by sputtering process without post-selenization is feasible.


    Contents Chapter 1 Introduction 1 Chapter 2 Background 3 2-1 Introduction of photovoltaic devices 3 2-1-1 What is photovoltaics? 3 2-1-2 Solar radiation spectrum 5 2-1-3 Basic principle of solar cells 7 2-1-3-1 I-V characteristic of solar cells 10 2-1-3-2 C-V characteristic of solar cells 13 2-2 Basic characterization of CIGS absorbed layers 16 2-2-1 Introduction of CIGS thin-film solar cells 16 2-2-2 Optical properties of CIGS absorber layers 18 2-2-2-1 Absorption coefficient of CIGS absorber layers 18 2-2-2-2 Tunable direct band gap of CIGS absorber layers 19 2-2-3 Electrical properties of CIGS absorber layers 24 2-2-3-1 Effects of intrinsic defects in CIGS absorber layers 24 2-2-3-2 Interfaces at the two sides of CIGS absorber layers 28 2-2-3-3 Effects of Sodium in CIGS absorber layers 31 2-2-4 Structural properties of CIGS absorber layers 34 2-2-4-1 CIGS orientation issue 36 2-2-4-2 Second phase issue in CIGS absorber layers 38 Chapter 3 Experiment Procedure 40 3-1 Experiment Flow Chart 40 3-2 RF Magnetron Sputtering System 41 3-3 X-Ray Diffraction (XRD) 42 3-4 Transmission Electron Microscopy (TEM) 43 3-5 Field-emission Scanning Electron Microscopy (FE-SEM) equipped with an energy dispersive X-ray spectrometer (EDX) 45 3-6 Solar Simulator and Keithley 4200-SCS 46 3-7 Raman Spectroscopy 47 3-8 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) 48 3-9 UV-Visible Near IR Absorption Spectroscopy 49 Chapter 4 Results and Discussions 50 4-1 Introduction 50 4-2 Experiment Procedure 51 4-3 Basic analysis of CIGS films sputtered with 22%-Cu target 52 4-3-1 Energy band gap of CIGS films 53 4-3-2 X-ray diffraction of CIGS films 54 4-3-3 Composition ratio of CIGS films 56 4-3-4 Efficiency of CIGS thin film solar cells 57 4-3-5 Brief results and discussions 58 4-4 Analysis of CIGS films deposited with 22%-Cu target 59 4-4-1 XRD of CIGS films 59 4-4-2 SEM of CIGS films 62 4-4-3 TEM-EDX of CIGS films 65 4-4-4 Raman spectroscopy of CIGS films 68 4-4-5 Composition ratio of CIGS films 70 4-4-6 SIMS of CIGS films 72 4-4-7 KCN issue on the second phase of Cu2Se in CIGS films 73 4-4-8 Brief results and discussions 76 4-5 Analysis of CIGS films deposited with 18%-Cu target 78 4-5-1 XRD of CIGS films 78 4-5-2 SEM of CIGS films 80 4-5-3 Composition ratio of CIGS films 83 4-5-4 Energy band gap of CIGS films 85 4-5-5 Raman spectroscopy of CIGS films 86 4-5-6 Resistivity of CIGS films 90 4-5-7 Efficiency of CIGS thin film solar cells 92 4-5-8 Brief results and discussions 93 Chapter 5 Conclusion 95 References 96

    [1] I. Repins et al., Prog. Photovolt: Res. Appl., 16, 235-239 (2008)
    [2] J. H. Ermer et al., Proc. 18th IEEE PV Spec. Conf., 1655-1658 (1985)
    [3] N. Romeo et al., Solar Cells, 16, 155-164 (1986)
    [4] T. Unold et al., Appl. Phys. Lett., 88, 213502 (2006)
    [5] T. Nakada et al., Jpn. J. Appl. Phys., 34, 4715-4721 (1995)
    [6] L. Chung Yang et al., Proc. 23rd IEEE PV Spec. Conf., 505-509 (1993)
    [7] Luqne A. and Hegedus S., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, England (2003)
    [8] Jenny Nelson, The Physics of Solar Cells, Imperial College Press, England (2003)
    [9] N. S. Kopeika et al., Proc. of the IEEE, 58, 1571-1577 (1970)
    [10] http://bouman.chem.georgetown.edu/S02/lect23/lect23green.html
    [11] Donald A. Neamen, An Introduction to Semiconductor Device, Mc-Graw Hill
    (2006)
    [12] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, John Wiley &
    Sons (2007)
    [13] Markvart T., and Castafier L., Practical Handbook of Photovoltaics:
    Fundamentals and Applications, Elsevier Science Ltd., Oxford (2003)
    [14] M. A. Contreras et al., Prog. Photovolt: Res. Appl., 13, 209-216 (2005)
    [15] S. S. Hegedus et al., Prog. Photovolt: Res. Appl., 12, 155-176 (2004)
    [16] S. H. Wei et al., Appl. Phys. Lett., 72, 3199-3201 (1998)
    [17] M. Nerat et al., J. Appl. Phys., 104 083706 (2008)
    [18] A. Romeo et al., Prog. Photovolt: Res. Appl., 12, 93-111 (2004)
    [19] J. Palm et al., Solar Energy, 77, 757-765 (2004)
    [20] http://web1.nsc.gov.tw/ct.aspx?xItem=10532&ctNode=40&mp=1
    [21] T. Nakada et al., Jpn. J. Appl. Phys., 41, L165-L167 (2002)
    [22] A. Goetzberger et al., Materials Science and Engineering R, 40, 1-46 (2003)
    [23] M. A. Contreras et al., Solar Energy Materials & Solar Cells, 41, 231-246 (1996)
    [24] K. Kushiya, Solar Energy Materials & Solar Cells, 93, 1037-1041 (2009)
    [25] Z. W. Lu et al., Phys. Rev. B, 47, 9385-9410 (1993)
    [26] D. Abou-Ras et al., Thin Solid Films, 480, 433-438 (2005)
    [27] S. Nishiwaki et al., Jpn. J. Appl. Phys., 37, L71-L73 (1998)
    [28] C. S. Jiang et al., Appl. Phys. Lett., 82, 127-129 (2003)
    [29] M. A. Contreras et al., Prog. Photovolt: Res. Appl., 7, 311-316 (1999)
    [30] K. Ramanathan et al., Solar Energy Materials & Solar Cells, 55, 15-22 (1998)
    [31] A. L. Fahrenbruch and R. H. Bube, Fundamentals of solar cells, New York: Academic Press (1983)
    [32] S. Ishizuka et al., Appl. Phys. Lett., 91, 041902 (2007)
    [33] S. Ishizuka et al., J. Appl. Phys., 106 034908 (2009)
    [34] J. Hedström et al., Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, 364-371 (1993)
    [35] M. Ruckh et al., Conference Record of the 1994 IEEE 1st World Conference on
    Photovoltaic Energy Conversion, 156-159 (1994)
    [36] B. J. Stanbery et al., Conference Record of the 26th IEEE Photovoltaic Specialists Conference IEEE, 499-502 (1997)
    [37] V. Probst et al., Proceedings of the 1st World Conference on Photovoltaic Energy Conversion IEEE, 144-147 (1994)
    [38] M. A. Contreras et al., Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 359-362 (1997)
    [39] D. W. Niles et al., J. Vac. Sci. Technol. A, 17, 291-296 (1997)
    [40] D. W. Niles et al., J. Vac. Sci. Technol. A, 15, 3044-3049 (1997)
    [41] L. Kronik et al., Adv. Mater., 10, 31-36 (1998)
    [42] S. H. Wei et al., J. Appl. Phys., 85 7214-7218 (1999)
    [43] B. J. Stanbery, Crit. Rev. Solid State, 27, 73-117 (2002)
    [44] C. S. Jiang et al., Appl. Phys. Lett., 82, 127-129 (2003)
    [45] M. A. Contreras et al., Thin Solid Films, 361, 167-171 (2000)
    [46] S. Chaisitsak et al., Jpn. J. Appl. Phys., 41, 507-513 (2002)
    [47] T. Schlenker et al., Thin Solid Films, 480, 29-32 (2005)
    [48] S. Nishiwaki et al., J. Mater. Res., 14, 4514-4520 (1999)
    [49] H.W. Schock et al., Physica B, 308-310, 1081-1085 (2001)
    [50] E. Romero et al., Brazilian Journal of Physics, 36, 1050-1053 (2006)
    [51] F. Lin et al., Solid State Sciences, 11, 972–975 (2009)
    [52] X. Fontané et al., Appl. Phys. Lett., 95, 261912 (2009)
    [53] C. Xue et al., J. Appl. Phys., 96 1963-1969 (2004)
    [54] N. Kohara et al., Jpn. J. Appl. Phys., 39, 6316-6320 (2000)
    [55] I.H. Choi et al., Thin Solid Films, 515, 4778-4782 (2007)
    [56] A. E. Delahoy et al., Thin Film CIGS Photovoltaic Technology, NREL (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE