研究生: |
陳奕璋 Chen, Yi-Chang |
---|---|
論文名稱: |
四元靶-濺鍍製程之銅銦鎵硒薄膜性質之研究 Study of CIGS thin films sputtered from a single quaternary-CIGS target |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 銅銦鎵硒薄膜太陽能電池 、二次相 、四元靶 、濺鍍 |
外文關鍵詞: | CIGS thin-film solar cell, Second phase, quaternary target, sputtering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis we developed sputtering process of CIGS absorber layers using a single quaternary-CIGS target. CIGS films were prepared without post-selenization by one-step RF sputtering at different substrate temperature. Additionally, a series of analysis on CIGS films was performed.
Two kinds of quaternary-CIGS targets with different composition were used in this thesis. One is copper-rich and the other is copper-poor. (The composition ratio of the copper-rich is Cu: 22.7 %, In: 18.2 %, Ga: 8.1 %, Se: 51.0 % and the composition ratio of the copper-poor is Cu: 18.0 %, In: 18.2 %, Ga: 8.1 %, Se: 55.7 %.) To investigate properties of CIGS films, it was observed that second phases of copper selenide and indium selenide occurred during fabrication of CIGS films. The copper-selenide phase is conductive and a leakage-current path in CIGS films. Hence we altered the 22%-Cu target into the 18%-Cu target in order to suppress the formation of Cu-Se phases.
Finally, the efficiency of 4.04% was achieved and the effective area up to 0.2 cm2. The CIGS solar cell fabricated by sputtering process without post-selenization is feasible.
[1] I. Repins et al., Prog. Photovolt: Res. Appl., 16, 235-239 (2008)
[2] J. H. Ermer et al., Proc. 18th IEEE PV Spec. Conf., 1655-1658 (1985)
[3] N. Romeo et al., Solar Cells, 16, 155-164 (1986)
[4] T. Unold et al., Appl. Phys. Lett., 88, 213502 (2006)
[5] T. Nakada et al., Jpn. J. Appl. Phys., 34, 4715-4721 (1995)
[6] L. Chung Yang et al., Proc. 23rd IEEE PV Spec. Conf., 505-509 (1993)
[7] Luqne A. and Hegedus S., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, England (2003)
[8] Jenny Nelson, The Physics of Solar Cells, Imperial College Press, England (2003)
[9] N. S. Kopeika et al., Proc. of the IEEE, 58, 1571-1577 (1970)
[10] http://bouman.chem.georgetown.edu/S02/lect23/lect23green.html
[11] Donald A. Neamen, An Introduction to Semiconductor Device, Mc-Graw Hill
(2006)
[12] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, John Wiley &
Sons (2007)
[13] Markvart T., and Castafier L., Practical Handbook of Photovoltaics:
Fundamentals and Applications, Elsevier Science Ltd., Oxford (2003)
[14] M. A. Contreras et al., Prog. Photovolt: Res. Appl., 13, 209-216 (2005)
[15] S. S. Hegedus et al., Prog. Photovolt: Res. Appl., 12, 155-176 (2004)
[16] S. H. Wei et al., Appl. Phys. Lett., 72, 3199-3201 (1998)
[17] M. Nerat et al., J. Appl. Phys., 104 083706 (2008)
[18] A. Romeo et al., Prog. Photovolt: Res. Appl., 12, 93-111 (2004)
[19] J. Palm et al., Solar Energy, 77, 757-765 (2004)
[20] http://web1.nsc.gov.tw/ct.aspx?xItem=10532&ctNode=40&mp=1
[21] T. Nakada et al., Jpn. J. Appl. Phys., 41, L165-L167 (2002)
[22] A. Goetzberger et al., Materials Science and Engineering R, 40, 1-46 (2003)
[23] M. A. Contreras et al., Solar Energy Materials & Solar Cells, 41, 231-246 (1996)
[24] K. Kushiya, Solar Energy Materials & Solar Cells, 93, 1037-1041 (2009)
[25] Z. W. Lu et al., Phys. Rev. B, 47, 9385-9410 (1993)
[26] D. Abou-Ras et al., Thin Solid Films, 480, 433-438 (2005)
[27] S. Nishiwaki et al., Jpn. J. Appl. Phys., 37, L71-L73 (1998)
[28] C. S. Jiang et al., Appl. Phys. Lett., 82, 127-129 (2003)
[29] M. A. Contreras et al., Prog. Photovolt: Res. Appl., 7, 311-316 (1999)
[30] K. Ramanathan et al., Solar Energy Materials & Solar Cells, 55, 15-22 (1998)
[31] A. L. Fahrenbruch and R. H. Bube, Fundamentals of solar cells, New York: Academic Press (1983)
[32] S. Ishizuka et al., Appl. Phys. Lett., 91, 041902 (2007)
[33] S. Ishizuka et al., J. Appl. Phys., 106 034908 (2009)
[34] J. Hedström et al., Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, 364-371 (1993)
[35] M. Ruckh et al., Conference Record of the 1994 IEEE 1st World Conference on
Photovoltaic Energy Conversion, 156-159 (1994)
[36] B. J. Stanbery et al., Conference Record of the 26th IEEE Photovoltaic Specialists Conference IEEE, 499-502 (1997)
[37] V. Probst et al., Proceedings of the 1st World Conference on Photovoltaic Energy Conversion IEEE, 144-147 (1994)
[38] M. A. Contreras et al., Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 359-362 (1997)
[39] D. W. Niles et al., J. Vac. Sci. Technol. A, 17, 291-296 (1997)
[40] D. W. Niles et al., J. Vac. Sci. Technol. A, 15, 3044-3049 (1997)
[41] L. Kronik et al., Adv. Mater., 10, 31-36 (1998)
[42] S. H. Wei et al., J. Appl. Phys., 85 7214-7218 (1999)
[43] B. J. Stanbery, Crit. Rev. Solid State, 27, 73-117 (2002)
[44] C. S. Jiang et al., Appl. Phys. Lett., 82, 127-129 (2003)
[45] M. A. Contreras et al., Thin Solid Films, 361, 167-171 (2000)
[46] S. Chaisitsak et al., Jpn. J. Appl. Phys., 41, 507-513 (2002)
[47] T. Schlenker et al., Thin Solid Films, 480, 29-32 (2005)
[48] S. Nishiwaki et al., J. Mater. Res., 14, 4514-4520 (1999)
[49] H.W. Schock et al., Physica B, 308-310, 1081-1085 (2001)
[50] E. Romero et al., Brazilian Journal of Physics, 36, 1050-1053 (2006)
[51] F. Lin et al., Solid State Sciences, 11, 972–975 (2009)
[52] X. Fontané et al., Appl. Phys. Lett., 95, 261912 (2009)
[53] C. Xue et al., J. Appl. Phys., 96 1963-1969 (2004)
[54] N. Kohara et al., Jpn. J. Appl. Phys., 39, 6316-6320 (2000)
[55] I.H. Choi et al., Thin Solid Films, 515, 4778-4782 (2007)
[56] A. E. Delahoy et al., Thin Film CIGS Photovoltaic Technology, NREL (2001)