研究生: |
林宜蓉 Lin, I-Rong |
---|---|
論文名稱: |
虎斑烏賊的視覺認知能力:視覺分辨、視覺類化及視覺填補 Visual Cognition in Cuttlefish Sepia Pharaonis: Discrimination, Generalization, and Amodal Completion |
指導教授: |
焦傳金
Chiao, Chuan-Chin |
口試委員: |
陳建中
楊恩誠 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 頭足類動物 、認知能力 、操作制約 |
外文關鍵詞: | cephalopod, cognitive ability, operant conditioning |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頭足類動物(包括章魚、魷魚及烏賊)擁有複雜的神經系統,且被認為是具有相當程度認知能力的無脊椎動物。頭足類大腦內之神經細胞數量高達五億個,其中負責處理視覺訊息的腦區佔三分之二以上,加以具有空間解析度良好的單眼結構,因此頭足類動物的視覺系統非常發達。頭足類動物高度倚賴視覺,舉凡日常生活中之生存行為、至複雜的偽裝及溝通行為皆與視覺密切相關,因此視覺在頭足類動物認知功能的展現上,應扮演著極為重要之角色。在頭足類大腦中,視覺訊號究竟如何被處理、感知層面的訊息是如何被建立,尚需要更多實驗來檢視。本篇研究希望藉由行為實驗來探究他們的視覺認知能力,期許能以此作為釐清頭足類動物視覺運作機制之洞見。
我們利用操作制約的方式訓練虎斑烏賊分辨魚、蝦圖案,所使用之實驗裝置主要功能是分隔出兩個獨立區域,烏賊必須進入放置特定圖案之區域或以觸手攻擊此圖案,才可獲得食物作為獎賞,而通過訓練的條件是連續兩天之選擇正確率皆達80%。烏賊通過訓練後,需接受一檢視其視覺分辨能力的測驗,在此測驗中,撤換未與獎賞作連結之圖片,改為螃蟹圖案。隨後,進行一連串的測驗來檢視其視覺類化能力,測驗用圖片為魚、蝦圖案之改編圖案(例如: 縮小型、素描型…)。最後檢視其視覺填補能力,測驗用圖片為部分遮蔽的魚、蝦圖案。
實驗結果顯示,烏賊可以成功地分辨魚、蝦及螃蟹圖案,能對魚、蝦圖案之縮小型、素描型與剪影做出正確反應,且可辨識部分遮蔽的魚、蝦圖案。因此我們認為虎斑烏賊具有視覺的分辨、類化及填補能力。
Modern cephalopods are the most intelligent invertebrates with keen vision which is important for them to move rapidly for successful predation, camouflage for danger avoidance and communicate in complex ways with their body patterns. Therefore, vision might impact the cognition of cephalopods to some degree, but knowledge about how visual information is processed in the perceptual level is still not completely understood. In this work, we investigated the intelligence developing in a different way from vertebrates by observing the cognitive behaviors of cuttlefish. Results from this research are expected to give insights into the visual processing mechanism of cuttlefish.
Cuttlefish (Sepia pharaonis) were trained to discriminate figures of shrimp and fish. Training for discrimination was based on operant conditioning and was given in the home tanks of each animal. Experimental apparatus was composed of two separated regions, and cuttlefish had to enter the rewarded area where the rewarded figure was presented or even to strike the rewarded figure with their tentacles for food. After cuttlefish achieved the learning criteria, a discrimination task was conducted to confirm learning. The non-rewarded figure was replaced with a crab figure in the discrimination test. Several transfer tests utilizing novel stimuli which are modified versions of training figures followed up the discrimination test. The outcome of visual processing in cuttlefish was examined in these transfer tasks.
The results show that cuttlefish are capable of discriminating figures of fish, shrimp and crab. Furthermore, they do generalize the small-scale, sketch, and silhouette of the training figures, and respond properly, though the response strength is lower than that in training and individual differences exist in performance. In addition, cuttlefish also recognize the fragmented image of the training figures. These findings suggest that cuttlefish have the ability of discrimination, generalization, and amodal completion.
Agin, V., Chichery, R., Dickel, L. & Chichery, M. P. 2006. The “prawn-in-the-tube” procedure in the cuttlefish: Habituation or passive avoidance learning? Learning & Memory, 13, 97-101.
Alves, C., Boal, J. G. & Dickel, L. 2008. Short-distance navigation in cephalopods: a review and synthesis. Cognitive processing, 9, 239-247.
Alves, C., Chichery, R., Boal, J. G. & Dickel, L. 2007. Orientation in the cuttlefish Sepia officinalis: response versus place learning. Animal Cognition, 10, 29-36.
Boal, J. 1996. A review of simultaneous visual discrimination as a method of training octopuses. Biological Reviews, 71, 157-190.
Boycott, B. & Young, J. 1956. Reactions to shape in Octopus vulgaris Lamarck. Proceedings of the Zoological Society of London, 126, 491-547.
Brown, P. K. & Brown, P. S. 1958. Visual pigments of the octopus and cuttlefish. Nature, 182, 1288-1290.
Campan, R. & Lehrer, M. 2002. Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. Journal of Experimental Biology, 205, 559-572.
Darmaillacq, A. S., Chichery, R., Poirier, R. & Dickel, L. 2004a. Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. Developmental psychobiology, 45, 239-244.
Darmaillacq, A. S., Dickel, L., Chichery, M. P., Agin, V. & Chichery, R. 2004b. Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Animal behaviour, 68, 1291-1298.
Darmaillacq, A. S., Dickel, L., Rahmani, N. & Shashar, N. 2011. Do reef fish, Variola louti and Scarus niger, perform amodal completion? Evidence from a field study. Journal of Comparative Psychology, 125, 273.
Deruelle, C., Barbet, I., Dépy, D. & Fagot, J. 2000. Perception of partly occluded figures by baboons (Papio papio). Perception, 29, 1483-1497.
Dougherty, D. M. & Lewis, P. 1991. Stimulus generalization, discrimination learning, and peak shift in horses. Journal of the experimental analysis of behavior, 56, 97.
Douglas, R., Eva, J. & Guttridge, N. 1988. Size constancy in goldfish (Carassius auratus). Behavioural brain research, 30, 37-42.
Ewert, J. P. 1980. Neuroethology. Berlin: Springer-Verlag.
Fiorito, G. & Scotto, P. 1992. Observational learning in Octopus vulgaris. Science, 256, 545-547.
Ghirlanda, S. & Enquist, M. 2003. A century of generalization. Animal behaviour, 66, 15-36.
Giurfa, M. & Menzel, R. 1997. Insect visual perception: complex abilities of simple nervous systems. Current opinion in neurobiology, 7, 505-513.
Giurfa, M., Schubert, M., Reisenman, C., Gerber, B. & Lachnit, H. 2003. The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Behavioural brain research, 145, 161-169.
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J. & Zhang, S. 2009. Number-based visual generalisation in the honeybee. PLoS One, 4, e4263.
Guttman, N. & Kalish, H. I. 1956. Discriminability and stimulus generalization. Journal of Experimental Psychology, 51, 79-88.
Hanlon, R. T. & Messenger, J. B. 1998. Cephalopod behaviour: Cambridge Univ Pr.
Hateren, J. H., Srinivasan, M. & Wait, P. 1990. Pattern recognition in bees: orientation discrimination. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 167, 649-654.
Hochner, B. 2008. Octopuses. Current biology: CB, 18, R897.
Hochner, B. 2010. Functional and comparative assessments of the octopus learning and memory system. Front Biosci, 2, 764-771.
Hochner, B., Shomrat, T. & Fiorito, G. 2006. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. The Biological Bulletin, 210, 308-317.
Horridge, A. 2009. Generalization in visual recognition by the honeybee (Apis mellifera): A review and explanation. Journal of insect physiology, 55, 499-511.
Horridge, G., Zhang, S. & O'Carroll, D. 1992. Insect perception of illusory contours. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 337, 59-64.
Hvorecny, L. M., Grudowski, J. L., Blakeslee, C. J., Simmons, T. L., Roy, P. R., Brooks, J. A., Hanner, R. M., Beigel, M. E., Karson, M. A. & Nichols, R. H. 2007. Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition, 10, 449-459.
Jackson, R. & Li, D. 1998. Prey preferences and visual discrimination ability of Cyrba algerina, an araneophagic jumping spider (Araneae: Salticidae) with primitive retinae. Israel Journal of Zoology, 44, 227-242.
Jacobs-Jessen, U. F. 1959. Zur Orientierung der Hummeln und einiger anderer Hymenopteren. Z. Vergleich. PhysioL, 41, 597-641.
Jenkins, W., Pascal, G. & Walker Jr, R. 1958. Deprivation and generalization. Journal of Experimental Psychology, 56, 274.
Kanizsa, G. 1979. Organization in vision: Essays on Gestalt perception. New York: Praeger Press.
Kanizsa, G., Renzi, P., Conte, S., Compostela, C. & Guerani, L. 1993. Amodal completion in mouse vision. Perception, 22, 713-713.
Karson, M. A., Boal, J. G. & Hanlon, R. T. 2003. Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). Journal of Comparative Psychology, 117, 149.
Kehoe, E. 2009. Discrimination and generalization. Learning and memory: a comprehensive reference. Elsevier, Amsterdam, 123-149.
Kelber, A. 2002. Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 2573-2577.
Land, M. F. & Fernald, R. D. 1992. The evolution of eyes. Annual review of neuroscience, 15, 1-29.
Lehrer, M. & Campan, R. 2005. Generalization of convex shapes by bees: what are shapes made of? Journal of Experimental Biology, 208, 3233-3247.
Lombardi, C. M. & Delius, J. D. 1990. Size invariance in visual pattern recognition by pigeons.
Mäthger, L. M., Shashar, N. & Hanlon, R. T. 2009. Do cephalopods communicate using polarized light reflections from their skin? Journal of Experimental Biology, 212, 2133-2140.
Mather, J. A. 1995. Cognition in cephalopods. Advances in the Study of Behavior, 24, 317-353.
Mather, J. A. 2008. Cephalopod consciousness: Behavioural evidence. Consciousness and cognition, 17, 37-48.
Messenger, J. 1973. Learning in the cuttlefish, Sepia. Animal behaviour, 21, 801-826.
Messenger, J. 1977a. Evidence that Octopus is colour blind. Journal of Experimental Biology, 70, 49-55.
Messenger, J. 1977b. Prey-capture and learning in the cuttlefish, Sepia. pp. 347-376.
Michotte, A., Thines, G. & Crabbe, G. 1964/1991. Amodal completion of perceptual structures. In: Michotte’s experimental phenomenology of perception (Ed. by G. Thines, A. Costall & G. Butterworth), pp. 140-167. Hillsdale, NJ: Erlbaum.
Muntz, W. R. A. 1961. Interocular transfer in Octopus vulgaris. J. comp. physiol. Psychol, 54, 49-55.
Muntz, W. R. A. 1970. An experiment on shape discrimination and signal detection in Octopus. The Quarterly Journal of Experimental Psychology, 22, 82-90.
Packard, A. 1972. Cephalopods and fish: the limits of convergence. Biological Reviews, 47, 241-307.
Pastore, N. 1958. Form perception and size constancy in the duckling. The Journal of Psychology, 45, 259-261.
Poppelreuter, W. 1917/1990. Disturbances of lower and higher visual capacities caused by occipital damage. Oxford, UK: Clarendon Press.
Pronk, R., Wilson, D. & Harcourt, R. 2010. Video playback demonstrates episodic personality in the gloomy octopus. Journal of Experimental Biology, 213, 1035-1041.
Ronacher, B. 1998. How do bees learn and recognize visual patterns? Biological cybernetics, 79, 477-485.
Sanders, G. D. 1975. The cephalopods. In: Invertebrate learning (Ed. by W. C. Corning, Dyal J. A., & Willows A. O. D.), pp. 1-101. New York: Plenum Press.
Sato, A., Kanazawa, S. & Fujita, K. 1997. Perception of object unity in a chimpanzee (Pan troglodytes). Japanese Psychological Research, 39, 191-199.
Sovrano, V. A. & Bisazza, A. 2008. Recognition of partly occluded objects by fish. Animal Cognition, 11, 161-166.
Srinivasan, M., Zhang, S. & Witney, K. 1994. Visual discrimination of pattern orientation by honeybees: Performance and implications for "cortical" processing. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 343, 199-210.
Stach, S., Benard, J. & Giurfa, M. 2004. Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature, 429, 758-761.
Stach, S. & Giurfa, M. 2005. The influence of training length on generalization of visual feature assemblies in honeybees. Behavioural brain research, 161, 8-17.
Sutherland, N. & Muntz, W. 1959. Simultaneous discrimination training and preferred directions of motion in visual discrimination of shape in Octopus vulgaris. Lamarck. Pubbl. Staz. zool. Napoli, 31, 109-126.
Theil, T. 2010. Brightness discrimination in a nocturnal hunting spider, uniwien.
Tinbergen, N., Meeuse, B. & Varossieau, L. 1942. Die Balz des Samtfalters, Eumenis (=Satyrus) semele (L.). Zeitschrift fur Tierpsychologie. Zeitschrift für Tierpsychologie, 5, 182-226.
Tvardíková, K. & Fuchs, R. 2010. Tits use amodal completion in predator recognition: a field experiment. Animal Cognition, 13, 609-615.
Wells, M. 1964. Tactile discrimination of shape by Octopus. Quarterly Journal of Experimental Psychology, 16, 156-162.
Wells, M. & Young, J. 1970. Stimulus generalization in the tactile system of octopus. Journal of Neurobiology, 2, 31-46.
Wells, M. J. 1978. Octopus: physiology and behaviour of an advanced invertebrate. London: Chapman and Hall
Young, J. Z. & Boycott, B. B. 1971. The anatomy of the nervous system of Octopus vulgaris.
Zylinski, S., Darmaillacq, A. S. & Shashar, N. 2012. Visual interpolation for contour completion by the European cuttlefish (Sepia officinalis) and its use in dynamic camouflage. Proceedings of the Royal Society B: Biological Sciences.
Zylinski, S., Osorio, D. & Shohet, A. 2009. Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 439-448.