簡易檢索 / 詳目顯示

研究生: 林佳佳
SURYANI
論文名稱: 小球藻天庚酮糖-1,7-二磷酸酶基因的選殖
Molecular cloning of sedoheptulose-1,7-bisphosphatase from Chlorella pyrenoidosa
指導教授: 徐邦達
Bandar, Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 小球藻天庚酮糖二磷酸酶
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Sedoheptulose-1,7-biphosphatase (SBPase) 是卡爾文氏循環特有的酵素,並且參與光合作用的固碳反應。小球藻的SBPase染色體基因包含7個exon和6個intron。它的cDNA全長有1572 bp,其中有1197 bp是開放讀碼區 (ORF),可轉譯為389個胺基酸。胺基酸序列的比對顯示小球藻與Chlamydomonas reinhardtii的SBPase有72.1%的相似度。小球藻SBPase的putative cleavage site估計在第65胺基酸,而產生36 kDa的成熟蛋白質。
    利用homology modeling預測小球藻SBPase酵素的三級結構顯示此蛋白質有兩個區域,調控區域和受質區域,而兩個區域以單條多胜鍵形成的轉接摳扭連接在一起。此酵素的鐵硫氧化還原蛋白(thioredoxin) 調控與半胱胺基酸有關。在小球藻SBPase蛋白質裡發現相近的半胱胺基酸有潛力形成雙硫鍵。


    Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme unique to Calvin cycle and is involved in photosynthetic carbon fixation. Gene encoding the chloroplast SBPase from Chlorella pyrenoidosa 211-8b was cloned. The coding region of this gene contains 7 exons and 6 introns. The full length cDNA is 1572 bp, with an open reading frame of 1197 bp, which can be translated into a protein with 389 amino acid residues. Comparison of the deduced amino acid sequence reveals 72.1% identity with that of Chlamydomonas reinhardtii, an eukaryotic unicellular green algae. The putative cleavage site was determined at residue 65, resulting in 36 kDa of mature protein.
    The three dimensional structure of chlorella SBPase was predicted by homology modeling. The modeled structure indicates that this protein comprises of a regulatory domain and a carbon substrate domain, joined by a single polypeptide hinge. Thioredoxin regulation of this enzyme involved cysteine residues. The potentially formed disulfide bridges are indicated.

    Abstract-----------------------------------------------------------------------------1 摘要---------------------------------------------------------------------------------2 前言---------------------------------------------------------------------------------3 1. 光合作用暗反應-------------------------------------------------------------3 2. FBPase-------------------------------------------------------------------------4 3. SBPase-------------------------------------------------------------------------6 材料與方法-----------------------------------------------------------------------12 結果--------------------------------------------------------------------------------19 1. SBPase cDNA的選殖-----------------------------------------------------19 2. SBPase染色體DNA的選殖----------------------------------------------20 討論--------------------------------------------------------------------------------22 1. SBPase mRNA的分析-----------------------------------------------------22 2. SBPase胺基酸序列--------------------------------------------------------23 3. SBPase 蛋白質結構-------------------------------------------------------26 4. SBPase氧化還原區域-----------------------------------------------------27 圖表--------------------------------------------------------------------------------31 參考文獻--------------------------------------------------------------------------55 附錄--------------------------------------------------------------------------------60

    吳欣欣 (2002) 小球藻熱逆境後葉綠素和葉綠體衰變的研究,國立清華大學生命科學研究所碩士論文

    Anderson, L. E., Huppe, H. C., Li, A. D. and Stevens, F. J. (1996) Identification of a potential redox-sensitive interdomain disulfide in the sedoheptulose biphosphatase of Chlamydomonas reinhardtii. Plant J 10: 553-560.

    Anderson, L. E., Li, D., Prakash, N. and Stevens, F. J. (1995) Identification of potential redox-sensitive cysteines in cytosolic forms of fructosebisphosphatase and glyceraldehyde-3-phosphate dehydrogenase. Planta 196: 118-124.

    Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K., and Keeling, P. J. (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100: 7678-7683.

    Balogh, A., Koncz, T., Kiss, E. and Heszky, L. E. (2004) Fragaria x ananassa sedoheptulose-1,7-biphosphatase mrna, partial CDS. Direct submission to GenBank.

    Bates, P.A., Kelley, L.A., MacCallum, R.M. and Sternberg, M.J.E. (2001) Enhancement of Protein Modelling by Human Intervention in Applying the Automatic Programs 3D-JIGSAW and 3D-PSSM. Proteins, Suppl 5: 39-46.

    Breazeale, U. D., Buchanan, B. B. and Wolosiuk, R. A. (1978) Chloroplast sedoheptulose-1,7-biphosphatase: evidence for regulation by the ferredoxin/thioredoxin system. Z Naturfursch 33c: 521-528.

    Buchanan, B. B., Schurmann, P. and Wolosiuk, R. A. (1976) Appearance of sedoheptulose-1,7-diphosphatase activity on conversion of chloroplast fructose-1,6-diphosphatase from the dimer form to monomer form. Biochem Biophys Res Commun 69: 970-978.

    Cadet, F., Meunier, J-C. and Ferte, N. (1987) Isolation and purification of chloroplastic spinach (Spinacia oleracea) sedoheptulose-1,7-biphosphat- ase. Biochem J 241:71-74.

    Chen, P. C. and Lorenzen (1986) Changes in the productivity and nuclear divisions in synchronous Chlorella and circadian rhythm. Plant Cell Physiol 27: 1423-1427.

    Chen, X., Li, Y. and Zhu, Y. (2002) Oryza sativa (indica-cultivar group) sedoheptulose-1,7-biphosphatase precursor, gene, complete cds; nuclear gene for chloroplast product. Direct submission to GenBank.

    Chen, Y. H. and Hsu, B. D. (1995) Effects of dehydration on the electron transport of Chlorella. An in vivo fluorescence study. Photosyn Res 46: 295-299.

    Chomczynski, P. and Sacchi, N. (1987) Single Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal Biochem 162: 156-159.

    Chueca, A., Sahrawy, M., and Gorge, J. L. (2002) Chloroplast fructose- 1,6-biphosphatase: structure and function. Photosyn Res 74: 235-249.

    Contreras-Moreira,B., Bates,P.A. (2002) Domain Fishing: a first step in protein comparative modelling. Bioinformatics 18: 1141-1142.

    Dunford, R. P., Durrant, M. C., Catley, M. A. and Dyer, T. A. (1998) Location of the redox-active cysteines in chloroplast sedoheptulose-1,7- bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosyn Res 58: 221-230.

    Emanuelsson, O., Nielsen, H. and von Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8: 978-984

    El-Sayed, N. M. A., Ghedin, E., Song, J., MacLeod, A., Bringaud, F., Larkin, C., Wanless, D., Peterson, J., Hou, L., Taylor, S., Tweedie, A., Biteau, N., Khalak, H. G., Lin, X., Mason, T., Hannick, L., Caler, E., Blandin, G., Bartholomeu, D., Simpson, A. J., Kaul, S., Zhao, H., Pai, G., Van Aken, S., Utterback, T., Haas, B., Koo, H. L., Umayam, L., Suh, B., Gerrard, C., Leech, V., Qi, R., Zhou, S., Schwartz, D., Feldblyum, T., Salzberg, S., Tait, A., Turner, M. R., Ullu, E., White, O., Melville, S., Adams, M. D., Fraser, C. M. and Donelson, J. E. (2003) The sequence and analysis of Trypanosoma brucei chromosome II. Nucl Acids Res 31: 4856-4863.

    Gerbling, K-P. and Latzko, E. (1986) Fructose-1,6-biphosphatase form B from Synechococcus leopoliensis hydrolyzes both fructose and sedoheptulose biphosphatase. Plant Physiol 80: 716-720.

    Hahn, D. and Kuck, U. (1994) Nucleotide sequence of a cDNA encoding the chloroplast sedoheptulose-1,7-biphosphatase from Chlamydomonas reinhardtii. Plant Physiol 104: 1101-1102.

    Hahn, D., Kaltenbach, C. and Kuck, U. (1998) The Calvin cycle enzyme sedoheptulose-1,7-biphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii. Plant Mol Biol 36: 929-934.

    Jones, P. G., Lloyd J. C. and Raines, C. A. (1996) Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes. Plant Cell Environ 19: 231-236.

    Ke, H. M., Thorpe, C. M., Seaton, B. A., Marcus, F. and Lipscomb, W. N. (1989) Molecular structure of fructose-1,6-biphosphatase at 2.8Å resolution. Proc Natl Acad Sci USA 86: 1475-1479.

    Ke, H. M., Zhang, Y. P. and Lipscomb, W. N. (1990) Crystal structure of fructose-1,6-biphosphate complexed with fructose-6-phosphate, AMP and magnesium. Proc Natl Acad Sci USA 87: 5243-5247.

    Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150-163.
    Laing, W. A., Stitt, M and Heldt, H. W. (1981) Control of CO2 fixation. Changes in the activity of ribulose phosphate kinase and fructose- and sedoheptulose-biphosphatase in chloroplasts. Biochim Biophys Acta 637: 348-359.

    Li, D., Stevens, F. J., Schiffer, M. and Anderson, L. E. (1994) Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to the catalytic site in light-activated chloroplast enzymes. Biophys J 67: 29-35.

    Liu, C. L., Lee, Y. K. and Lee, H. K. (2002) Griffithsia japonica sedoheptulose-1,7-biphosphatase mrna, partial cds. Direct submission to GenBank.

    Lloyd, J. C., Raines, C. A., John, U. P. and Dyer, T. A. (1991) The chloroplast FBPase gene of wheat structure and expression of the promoter in photosynthetic and meristematic cells of transgenic tobacco plants. Mol Gen Genet 225: 209-216.

    Martin, W., Mustafa, A. Z., Henze, K. and Schnarrenberger, C. (1996) Higher plant chloroplast and cytosolic fructose-1,6-biphosphatase isozymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32: 485-491.

    Miles, A. J., Potts, S. C., Willingham, N. M. Raines, C. A. and Lloyd, J. C. (1993) A light- and developmentally regulated DNA-binding interaction is common to the upstream sequences of the wheat Calvin cycle bisphosphatase genes. Plant Mol Biol 22: 507-516.

    Miyasaka, H., Kanaboshi, H. and Ikeda, K. (1999) Isolation of several anti-stress genes from the halotolerant green alga Chlamydomonas by simple functional expression screening with Escherichia coli. World J Microbiol Biotechnol 16: 23-29

    Nishizawa, A. N. and Buchanan, B. B. (1981) Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose biphosphatase and sedoheptulose biphosphatase from corn leaves. J Biol Chem 256: 6119-6126

    Preiss, J. Biggs, M. L. and Greenberg, E. (1967) The effect of magnesium ion concentration on the pH optimum of the spinach leaf alkaline fructose diphosphatase. J Biol Chem 242: 2292-2294.

    Raines, C. A., Lloyd, J. C., Willingham, N. M., Potts, S. and Dyer, T. A. (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1, 7-biphosphatase reveal homology with fructose-1,6-biphosphatases. Eur J Biochem 205: 1053-1059.

    Raines, C.A., Lloyd, J. C. and Dyer, T. A. (1999) New insights into the structure and function of sedoheptulose-1,7-biphosphatase; an important but neglected Calvin cycle enzyme. J Exp Bot 50: 1-8.

    Saiki, R. K. (1990) Amplification of genomic DNA. pp. 13-20

    Sambrook, J., Russell, D. W. (2001) Molecular cloning – A laboratory manual. Cold Spring Harbor Laboratory Press.

    Suss, K. H., Arkona, C., Mantbuffel, R. and Adler, K. (1993) Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci USA 90: 5514-5518

    Willingham, N. M., Lloyd, J. C., and Raines, C. A. (1994) Molecular cloning of the Arabidopsis thaliana sedoheptulose-1,7-biphosphatase gene and expression studies in wheat and Arabidopsis thaliana. Plant Mol Biol 26:1191-1200.

    Wirtz, W., Stitt, M. and Heldt, H. W. (1982) Light activation of Calvin cycle enzymes as measured in pea leaves. FEBS Lett 142: 223-226.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE