簡易檢索 / 詳目顯示

研究生: 廖銘傳
Liao, Ming-Chuan
論文名稱: 空間隨機效應模式的懲罰估計和模式選取
Penalized Estimation and Selection for Spatial Random Effects Model
指導教授: 徐南蓉
Hsu, Nan-Jung
口試委員: 黃信誠
蔡恆修
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 49
中文關鍵詞: fixed rank krigingMLE方法EM演算法graphical lasso
外文關鍵詞: MLE, EM algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論空間隨機效應模式之MLE參數估計,MLE可透過EM演算法有效率運算數值解。此研究同時也考量以lasso的技巧在模型的相關參數上做適度的規範,以達到簡化模型結構的目的。模擬結果驗證所提出之方法在不同模式下都有不錯的估計表現和預測表現。此外實例分析使用東海葉綠素濃度資料,利用提出的方法建立模式後,驗證有良好的預測表現,表示提出的方法可以應用在真實資料分析上。

    關鍵字:fixed rank kriging、MLE方法、EM演算法、graphical lasso


    The thesis is about the maximum likelihood estimation for spatial random effects model. The maximum likelihood estimation has no closed form but the numerical solution can be effectively solved through the EM algorithm. Moreover, some regularization methods for covariance parameters are incorporated in the estimation procedure to further simplify the fitted model structure. The simulation results verify that the proposed estimation methods have good performance in both estimation and prediction under various non-stationary models. The methodology is also applied to a real data set, chlorophyll concentration data from SeaWiFS projects, for illustration.

    Keywords : fixed rank kriging, MLE, EM algorithm, graphical lasso

    第一章 緒論 1 第二章 空間隨機效應模式 4 第三章 參數估計與模式選取 7 3.1 最大概似估計法 (MLE) 7 3.2 懲罰最大概似估計法 (Penalized MLE, PMLE) 10 3.3 設限最大概似估計法 (Constrained MLE, CMLE) 13 3.4 Basis Functions的設定與選取順序 14 3.5 調控參數 (tuning parameter) 的選取 17 第四章 空間預測 19 第五章 模擬研究 20 5.1 模擬一 20 5.2 模擬二 29 第六章 實例分析:東海葉綠素濃度資料分析 35 第七章 結論 44 附錄A:MLE方法的EM演算法相關推論 45 附錄B:CMLE方法的EM演算法相關推論 47 參考文獻 48

    Chang, Y. M., Hsu, N.- J. and Huang H.-C. (2010), Semiparametric Estimation and Selection for Nonstationary Spatial Covariance Functions. Journal of Computational and Graphical Statistics, 19, 117-139.

    Cressie, N. and Johannesson, G. (2008), Fixed Rank Kriging for Very Large Spatial Data Sets. Journal of the Royal Statistical Society, Series B, 70, 209-226.

    Cressie, N., Shi, T. and Kang, E. L. (2010), Fixed Rank Filtering for Spatio-Temporal Data. Journal of Computational and Graphical Statistics, 19, 724-745.

    Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.

    Fan, J. and Lv, J. (2008), Sure Independence Screening for Ultra-High Dimensional Feature Space. Journal of the Royal Statistical Society, Series B, 70, 849–911.

    Friedman, J., Hastie, T. and Tibshirani, R. (2008), Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics, 9, 432-441.

    Henderson, H. V. and Searle, S. R. (1981), On Deriving the Inverse of a Sum of Matrices. SIAM Rev., 23, 53-60.

    Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006), Covariance Matrix Selection and Estimation via Penalized Normal Likelihood. Biometrika, 93, 85-98.

    Katzfuss, M. and Cressie, N. (2011), Spatio-Temporal Smoothing and EM Estimation for Massive Remote-Sensing Data Sets. Forthcoming in Journal of Time Series Analysis, 32, doi: 10.1111/j.1467-9892.2011.00732.x.

    Wang, H. (2009), Forward Regression for Ultra-High Dimensional Variable Screening. Journal of the American Statistical Association, 104, 1512-1524.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE