簡易檢索 / 詳目顯示

研究生: 吳嘉昱
Chia Yu Wu
論文名稱: 微抓舉式致動器之研究
The Research of
指導教授: 方維倫
Dr. Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 84
中文關鍵詞: 微機電系統致動器微抓舉式致動器定位自組裝
外文關鍵詞: MEMS,, actuator, scratch drive actuator, position, selfassemble
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微致動器於微機電系統中佔有舉足輕重的地位,但是每種致動器皆有其適合的應用範圍,若要使此系統能發揮其最佳狀態,致動器的選用相當重要,本篇論文將針對微抓舉式致動器,進行運動方式,外型尺寸與驅動電壓、頻率等作探討,並且利用改良過的MUMP’s製程製作出元件,並且經由實驗,驗證三角形外型之SDA能有較好的出力與前進能力。
    雖然SDA具有大位移量大出力之優點但是受到磨耗與殘餘電荷的影響操作次數無法如梳狀致動器等可以到達幾百萬次運作,因此SDA較適合應用於需要長運動距離,大出力但是操作次數低的情況。本篇論文也將展示三種SDA的應用元件,分別為微立式面鏡,微米級定位平台,與可定位之光衰減器(VOA),此三種元件將應用於作用後就固定之用途,因此SDA可以發揮其優點且避免其可靠度較低的缺點。


    Micro actuator play an important role in micro-electro-mechanical system, but any actuator has it’s adaptive application, if you want the system can do his best, the choice of actuator would become vary important.
    This thesis will discuss about the motion、the shape、the dimension、 the frequency and the driving voltage of scratch drive actuator, and fabricate the device by modified MUMP’s. From the experiment we can prove that the triangle scratch drive actuator has better ability of push、pull and motion.

    Although scratch drive actuator has the advantage of which can generate force about 100□n and has long working distance but it also has problem about wearing、 residual charge and can’t act so many times as comb drive actuator, so scratch drive actuator is adaptive for long working distance and great generation force but low operation number of times.

    This thesis will demonstrate three application for one shoot motion like 3D micro mirror, micro position stage, variable optical attenuator, so we can develop the virtue of scratch drive actuator and avoid the fault of reliability.

    中文摘要 …………………………………………………………………….2 英文摘要 …………………………………………………………………….3 誌謝 …………………………………………………………………….4 目錄 …………………………………………………………………….6 圖目錄 …………………………………………………………………….7 表目錄 …………………………………………………………………….10 第一章 緒論 ………………………………………………………….11 1-1研究動機 ………………………………………………………11 1-2文獻回顧 ………………………………………………………12 1-3研究目標 ………………………………………………………17 第二章 設計與分析…………………………………………………..22 2-1 SDA之基本工作原理 …………………………………………22 2-2 SDA性能研究…………………………………………………24 第三章 製程與測試 …………………………………………………39 3-1 製程步驟……………………………………………………….39 3-2量測儀器架設………………………………………………….42 3-3製程遭遇問題………………………………………………….44 3-4 測試結果………………………………………………………….…49 第四章 應用 ……………………………………………………………65 4-1微立式面鏡…………………………………………………….…65 4-2微米級位移平台……………………………………………………….…67 4-3 SDA於光衰減器之應用……………………………………………….…68 第五章 結論………………………………………………………….. 78 第六章 文獻回顧…………………………………………………….. 79

    [1] J. M. Bustillo, R. T. Howe, and R. Muller, “Surface Micromachining for microelectromechanical system, ” Proceedings of the IEEE, Vol. 86, Issue 8, 1998, pp. 1552-1574.
    [2] G. T. A. Kovacs, N. I. Maluf, and K.-E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, vol. 86, Issue 8, 1998, pp. 1536-1551.
    [3] J. Mohr, P. sley, C. Burbaus, W. Menz, and U. Mallrabe, “Fabrication of microsensor and microactuator element by the LIGA-Process,” Trandusers’91, San Francisco, CA, June 1991, pp. 607-609.
    [4] C. Hierold, A. Hildebrandt, U. Naher, T. Scheiter, B. Mensching, M.Steger, and R. Tielert, “A Pure CMOS surface micromachined integrated accelerometer,” IEEE MEMS’96, San Diego, CA, Feb. 1996, pp. 174-179.
    [5] Y. Konaka and M. G. Allen, “Single-and multi-layer electroplated microaccelerometers, ” IEEE MEMS’96, San Diego, CA, Feb. 1996, pp. 168-173.
    [6] J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “A sensitive Differential Capacitance to voltage converter for sensor application, ” IEEE Transactions on Instrumentation and Measurement, Vol. 48, Issue: 1, Feb. 1999, pp. 89-96.
    [7] http://www.analog.com/: Analog Device, Inc.
    [8] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique, ” Electronics Letters, Vol. 30, pp. 448-449, 1994.
    [9] R. S. Muller and K. Y. Lau, “Surface-Micromachined Microoptical Elements and Systems, ” Proceedings of The IEEE, Vol. 86, 1998, pp. 1705-1720.
    [10] M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning, ” Journal of Microelectromechanical Systems, Vol. 7, Issue 1, pp. 27-37, 1998.
    [11] E. Brown and D. Pyles, “Of mirrors and microns A convergence story, ” TI Technology Journal, pp. 122-127, 1998.
    [12] S. M. Sze, Semiconductor sensor, Wiley-Interscience, 1994.
    [13] L. S. Fan , Y. C. Tai and R. S. Muller, “In processed Electrostatic Micromotors, ” Sensors and Actuators A, Vol 20, pp. 41-47, 1989.
    [14] W. C. Tang, T. H. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures, ” Sensors and Actuators A, Vol 20, pp. 25-32, 1989.
    [15] L. Fan, M. C. Wu, K. D. Choquette, and M .H. Crawford, “Self-assembled microactuated XYZ stages for optical scanning and alignment, ” Trandusers’97, Chicago, IL, June 1997, pp. 319-322.
    [16] H. N. Kwon and J. H. Lee, “Characterization of a micromachined inchworm motor with thermoelastic linkage actuators, ” IEEE MEMS’02, Las Vegas, Nevada, Jan. 2002, pp. 586 –589.
    [17] M. Baltzer, T. Kraus, and E. Obermeier, “A Linear Stepping Actuator in Surface Micromachining Technology for low voltages and large displacements, ” Trandusers’97, Chicago, IL, June 1997, pp. 781-784.
    [18] J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Characterization of electrothermal actuators and arrays fabricated in a four level planarized surface-micromachined polycrystalline silicon process, ” Trandusers’97, Chicago, IL, June 1997, pp .769-772.
    [19] Y. Fukuta, T. Akiyama, and H. Fujita, “A reshaping technology with joule heat for three dimensional silicon structures, ” Transducers’95 Stockholm, Sweden, June 25-29, 1995, pp. 174-177.
    [20] M. S. Roders, J. J. Sniegowski, J. J. Allen, and P. J. McWhorter, “Intricate Mechanisms on a chip enabled by 5 level surface micromachining, ” Transducers’99, Sendai, Japan, June, 1999, pp. 990-993.
    [21] M. C. Wu, “Micromachining for optical and optoelectronic systems, ” Proceedings of The IEEE, Vol. 85, Issue. 11, 1997, pp. 1833-1856.
    [22] C.Marxer, M. A. Gretillat and N.F. de Rooij, “Vertical mirrors fabrication by reactive ion etching for fiber optical switching application, ” IEEE MEMS’97 , Nagoya, Japan, Apr. 1997, pp. 49-54.
    [23] J. L. A. Yeh , C. Y. Hui, and N. C. Tien, “Electrostatic model for an Asymmetric Combdrive, ” Journal of Microelectrostatic System, Vol 9, No.1, pp.126-135, 2000.
    [24] M. Huja and M. Husak, “Thermal microactuators for optical purpose, ” Information Technology: Coding and Computing, Nevada, 2001, pp. 137 –142.
    [25] W. Benecke and W. Riethmuller, “Applications of silicon microactuators based on bimorph structures, ” IEEE MEMS’89, Salt Lake City, UT, Feb. 1989, pp. 116 –120.
    [26] 陳文誌,“單層薄膜出平面微電熱式致動器”國立清華大學碩士班論文, 2001.
    [27] T. Akiyama and K. Shono, “Controlled stepwise motion in polysilicon microstructures, ” Journal of Microelectromechanical Systems, Vol. 2, No. 3, pp. 106-110, 1993.
    [28] T. Akiyama and H. Fujita, “A quantitative analysis of scratch drive actuator using buckling motion, ” IEEE MEMS '95, Amsterdam, Netherlands, Jan. 1995, pp. 310-315.
    [29] P. Langlet, D. Collar, T. Akiyama, and H. Fujita, “A quantitative analysis of Scratch Drive Actuation for integrated X/Y motion system,” Trandusers’97, Chicago, IL, June 1997, pp. 773-776.
    [30] R. J. Lynderman and V. M. Bright, “Optimized Scratch Drive actuator for Tethered nanometer positioning of chip-sized components, ”Solid State Sensor and Actuator Workshop 2000, Hilton head, SC, June 2000, pp. 214-217.
    [31] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system, ” IEEE Photonics Technology Letters, Vol. 6, Issue. 12, pp. 1445-1447, 1994.
    [32] L. Fan, R.T. Chen and M. C. Wu, “Universal MEMS platforms for passive RF component suspended inductors and variable capacitor, ” IEEE MEMS’98, Heidelberg, Germany, Jan. 1998, pp. 29-33.
    [33] T. Akiyama, D. Collard, and H. Fujita, “Scratch Drive Actuator with mechanical links for self assembly of three dimensional mems, ”Journal of Microelectromechanical System, Vol 6, No.1, pp.10-17, 1997.
    [34] L. Fan,M. C. Wu, K. D. Choquette, and M. H. Crawford, “Self-assembled microactuated XYZ stages for optical scanning and alignment, ” Solid State Sensors and Actuators workshop 1997, Hilton head, SC, Vol.1, 1997, pp.319 -322.
    [35] P. E. Kladitis, K. F. Harsh, V. M. Bright, and Y. C. Lee, “Three-dimensional modeling of solder shape for the design of solder self-assembled micro-electro-mechanical systems, ” IEEE MEMS’99, Nashville, Tennessee, November 14-19, 1999, pp. 11-18.
    [36] K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices, ” IEEE Transactions on Electron Devices, Vol 25, No. 10, 1978, pp. 1241-1250.
    [37] R. B. Hopkins, Design analysis of shafts and beams, McGraw-Hill, 1970.
    [38] 殷宏林,“陣列式自組裝三維微結構之研究”國立清華大學碩士班論文, 2001.
    [39] S. Suzuki, T. Matsuura, and H. Fujita, “Friction and wear studies on lubricants and materials application to MEMS, ” IEEE MEMS’91, Nara, Japan, Feb. 1991, pp. 143-147.
    [40] S. L. Miller, J. J. Sniegowski, and P. J. Mcwhorter, “Friction in surface micromachined microengines,” Sandia National Laboratories.
    [41]D. A. Koester, R. Mahadevan, B. Hardy, and K. W. Markus, “MUMPs Dssign Handbook revision 6,” Cronos Integrated Microsystems, 2001.
    [42] W. Fang and J. A. Wickert, “Post-buckling of micromachined beams, ” IEEE MEMS’94, Oiso, Japan, Jan. 1994, pp. 182-187.
    [43] 林弘毅,“復合式微矽加工平台之研究”國立清華大學博士班論文, 2002.
    [44] R. Wood, V. Dhuler, and E. Hill, “A MEMS variable optical attenuator, ” Optical MEMS’00, Kauai, Hawaii, Aug. 2000, pp. 121 –122.
    [45] S.-S. Lee and J.-U. Bu, “Low-Polymer digital optical switch with an integrated attenuator power consumption polymeric attenuator using a micromachined membrane-type waveguide, ” IEEE Photonics Technology Letters, Vol 12, Issue: 4, pp. 407 –409, 2000.
    [46] B. Barber, C. R. Giles, V. Askyuk, R. Rue, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator, ” IEEE Photonics Technology Letters, Vol 10, Issue: 9, pp. 1262 –1264, 1998.
    [47] C. R. Giles, V. Aksyuk, B. Barber, R. Rue, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems, ” Selected Topics in Quantum Electronics, Vol 5 ,Issue: 1, pp. 18 –25, 1999.
    [48] C. Marxer, P. Griss, and N.F. de Rooij, “A variable optical attenuator based on silicon micromechanics, ” IEEE Photonics Technology Letters, Vol 11, Issue: 2, pp. 233 –235, 1999.
    [49] C. Marxer and N.F. de Rooij, “MEMS for applications in fiber optic communication, ” Lasers and Electro-Optics Society Annual Meeting, Piscataway, NJ, Vol. 1, 1998 , pp. 26 –27.
    [50] F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation, ” Journal of Selected Topics in Quantum Electronic, Vol 5, Issue: 1, pp. 52 –59, 1999.
    [51] F. Chollet , M. de Labachelerie, and H. Fujital, “Electromechanically actuated evanescent optical switch and polarization independent attenuator, ” IEEE MEMS’98, Heidelberg, Germany, Jan. 1998, pp. 476 –481.
    [52] K.W. Goossen, “MEMS-based variable optical interference devices, ” Optical MEMS’00, Kauai, Hawaii, Aug. 2000, pp. 17 –18.
    [53] J. E. Ford, J. A. Walker, D. S. Greywall, and K. W. Goossen, “Micromechanical fiber-optic attenuator with 3ms response, ” Lightwave Technology, Vol 16, Issue: 9, pp. 1663 –1670, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE