簡易檢索 / 詳目顯示

研究生: 李英舜
In-Shung Lee
論文名稱: 塑封球柵陣列電子構裝之破裂延伸
Crack Propagation in Plastic Ball Grid Array Electronic Packaging
指導教授: 葉孟考
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 100
中文關鍵詞: 塑封球柵陣列電子構裝迴焊脫層應力強度因子能量釋放率
外文關鍵詞: PBGA, reflow, delamination, stress intenstive factor, energy release rate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑封球柵陣列電子構裝(Plastic Ball Grid Array, PBGA)經過吸濕及迴焊加熱過程可因封裝內部各材料之熱膨脹係數的差異及所吸收之濕氣因昇溫而轉換成蒸氣所形成之蒸氣壓造成界面脫層。文中利用ANSYS軟體進行數值模擬,使用均質且不隨溫度改變之材料特性,求出PBGA內部在迴焊過程中裂縫尖端附近之應力強度因子及應變能釋放率,以分析其可能之延伸方向,並配合實驗,驗證模擬分析之可靠性。
    本文對兩種不同結構之PBGA其內部裂縫提出了可能延伸之方向,結果發現PBGA內部最容易產生脫成裂縫之位置為晶片座邊緣角落及晶片中心之晶片黏著層/晶片座接合介面;由溼熱實驗配合數值分析得到PBGA電子構裝內部最易產生之裂縫成長型態為裂縫由晶片黏著層/晶片座接合介面中心開始,沿著介面成長至封膠/晶片座介面,再沿著封膠/基板介面成長至構裝體表面;且改變迴焊溫度,對構裝體內部結構介面間之應力值和裂縫尖端之能量釋放率有相當程度之影響。


    摘要………………………………………………………………… I 致謝………………………………………………………………… II 目錄………………………………………………………………… III 圖表目錄…………………………………………………………… V 符號說明…………………………………………………………… XI 第一章 簡介……………………………………………………… 1 1.1 研究動機………………………………………… 1 1.2 文獻回顧………………………………………… 2 1.3 研究主題………………………………………… 5 第二章 有限單元分析…………………………………………… 6 2.1 單元選取………………………………………… 6 2.2 熱分析…………………………………………… 7 2.3 熱應力…………………………………………… 8 2.4 介面脫層之應力強度因子……………………… 9 2.5 單一材質裂縫之應力強度因子………………… 11 第三章 實驗程序………………………………………………… 13 3.1 實驗設備………………………………………… 13 3.1.1 C-Scan超音波檢測系統……………………… 13 3.1.2恆溫恆濕機…………………………………… 13 3.1.3熱風循環式烤箱……………………………… 13 3.1.4電子天平………………………………………… 14 3.1.5鑽石切割機……………………………………… 14 3.1.6拋光研磨機……………………………………… 14 3.1.7電腦顯微放大系統……………………………… 14 3.2 溫濕度實驗……………………………………… 15 第四章 結果與討論……………………………………………… 16 4.1 數值驗證及收斂性……………………………… 16 4.2不含脫層裂縫PBGA結構分析……………………… 17 4.2.1 PBGA模型一應力分析………………………… 17 4.2.2 PBGA模型二應力分析………………………… 18 4.2.3破壞起始位置預測……………………………… 19 4.3 PBGA模型一之脫層裂縫成長分析……………… 19 4.3.1起始點1之裂縫成長分析……………………… 19 4.3.2起始點3之裂縫成長分析……………………… 21 4.4 PBGA模型二之裂縫成長分析…………………… 23 4.5溫濕實驗結果……………………………………… 25 4.6 PBGA模型一250℃負載之分析…………………… 26 4.7 PBGA分析模型之修正…………………………… 26 第五章 結論……………………………………………………… 27 參考文獻…………………………………………………………… 28 圖表………………………………………………………………… 34

    1. Lau, J. H., “Ball Grid Array Technology,” McGraw-Hill, New York, 1995.
    2. Yi, S., Goh, J. S. and Yang, J. C., “Residual Stresses in Plastic IC Packages During Surface Mounting Process Preceded by Moisture Soaking Test,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 20, No. 3, pp. 247-255, August 1997.
    3. Yip, L., “Moisture Sensitivity and Reliability of Plastic Thermally Enhanced QFP Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 18, No. 3, pp. 485-490, August 1995.
    4. Tay, A. A. O. and Lin, T., “Moisture Diffusion and Heat Transfer in Plastic IC Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 19, No. 2, pp. 186-193, June 1996.
    5. Galloway, J. E. and Miles, B. M., “Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 20, No. 3, pp. 274-279, September 1997.
    6. Margaritis, G. and McGarry, F. J., “A Method to Predict Cracking in IC Plastic Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 17, No. 2, pp. 209-215, May 1994.
    7. Tay, A. A. O., Tan, G. L. and Lim, T. B., “Predicting Delamination in Plastic IC Packages and Determining Suitable Mold Compound Properties,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 17, No. 2, pp. 201-208, May 1994.
    8. Saitoh, T., Matsuyama, H. and Toya, M., “Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI Plastic Packages under Temperature Cyclic Loading,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 21, No. 4, pp. 422-427, November 1998.
    9. Anderson, T. L., “Fracture Mechanics - Fundamentals and Applications,” Second Edition, CRC Press, 1995.
    10. van Vroonhoven, J. C. W., “Effects of Adhesion and Delamination on Stress Singularities in Plastic-Packaged Integrated Circuits,” Journal of Electronic Packaging, Vol. 115, pp.28-32, March 1993.
    11. Saitoh, T., “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 19, No. 3, pp. 593-600, August 1996.
    12. Saitoh, T. and Toya, M., “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading - PartII : Using Alloy 42 as Leadframe Material,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 20, No. 2, pp. 176-183, May 1997.
    13. Lee, H. and Earmme, Y. Y., “A Fracture Mechanics Analysis of the Effects of Material Properties and Geometries of Components on Various Types of Package Cracks,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 19, No. 2, pp. 168-177, June 1996.
    14. Sauber, J., Lee, L., Hsu, S. and Hongsmatip,T., “Fracture Properties of Molding Compound Materials for IC Plastic Packaging,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 17, No. 4, pp.533-541, December 1994.
    15. Miyake, K., Suzuki, H. and Yamamoto, S. “Heat Transfer & Thermal Stress Analysis of Plastic-Encapsulated ICs,” IEEE Transactions on Reliability, Vol. R-34, No. 5, pp. 402-409, December 1985.
    16. Saitoh, T., Matsuyama, H. and Toya, M. “Numerical Stress Analysis of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading-PartIII : Material Properties and Package Geometries,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 21, No. 4, pp. 407-412, November 1998.
    17. Gallo, A. A. and Tubbs, T. R., “High Solder-Reflow Crack Resistant Molding Compound,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 19, No. 3, pp. 646-649, September 1995.
    18. Shin, D. K. and Lee, J. J., “Effective Material Properties and Thermal Stress Analysis of Epoxy Molding Compound in Electronic Packaging,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 21, No. 4, pp. 413-421, November 1998.
    19. Yang, J. C., Leong, C. W., Goh, J. S. and Yew, C. K., “Effects of Mold Compound Properties on Lead-on-Chip(LOC) Package Reliability During IR Reflow,” IEEE 46th Electronic Components & Technology Conference, May 28-31, Florida, pp. 48-55, 1996.
    20. Lee, C., Wong, T. C. and Pape, H., “A New Leadframe Design Solution for Improved Popcorn Cracking Performance,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 21, No. 1, pp. 3-12, March 1998.
    1. 葉孟考,廖學國, “含裂縫塑封球柵陣列電子構裝之熱應力分析,” 中國機械工程學會第15屆全國學術研討會論文集, pp. 105-112, 1998.
    22. Yeh, M. K. and Chang, K. C., “Failure Prediction in Plastic Ball Grid Array Electronic Packaging,” Advances in Electronic Packaging 1999, Proceedings of the Pacific RIM/ASME International Intersociety Electronic & Photonic Packaging Conference, InterPACK’99 EEP-Vol. 26-1, Hawaii, June 13-18, 1999.
    23. Yip, L., Massingill, T. and Naini, H., “Moisture Sensitivity Evaluation of Ball Grid Array Packages,” IEEE 46th Electronic Components & Technology Conference, May 28-31, Florida, pp. 829-835, 1996.
    24. Zhu, J., Zou, D. and Liu, S., “Real-Time Monitoring and Simulation of Thermal Deformation in Plastic Package,” Journal of Electronic Packaging, Vol. 20, pp. 160-165, June 1998.
    25. Miura, H., Kitano, M., Nishimura, A. and Kawai, S., “Thermal Stress Measurement in Silicon Chip Encapsulated in IC Plastic Packages Under Temperature Cycling,” Journal of Electronic Packaging, Vol. 115, pp. 9-14, March 1993.
    26. 蘇建安, “散熱強化型塑封球柵陣列電子構裝之分析與設計,” 清華大學動力機械工程研究所碩士論文, 1999.
    27. Ahn, S. H. and Kwon, Y. S., “Popcorn Phenomena in a Ball Grid Array Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 18, No. 3, pp. 491-495, August 1995.
    28. Mei, Y. H. and Liu, S., “An Investigation to Popcorning Mechanisms for IC Plastic Package : Defect Initiation,” Application of Fracture Mechanics in Electronic Packaging and Materials, ASME, EEP-Vol.11/MD-Vol.64, 1995.
    29. 邱以泰, 胡應強, “PBGA爆米花現象電腦模擬與實驗結果,” 工業材料, 141期, pp. 145-152, 1998.
    30. 周意工, “避免產生〝爆米花現象〞的最佳化製程,” 表面粘著技術, 第22期, pp. 49-52, 1998.
    31. Gannamani, R. and Pecht, M., “An Experiment Study of Popcorning in Plastic Encapsulated Microcircuits,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 19, No. 2, pp. 194-201, June 1996.
    32. Darveaux, R., Norton, L. and Carney, F., “Temperature Dependent Mechanical Bechavior of Plastic Packaging Materials,” 1995 Electronic Components and Technology Conference, pp. 1057-1058.
    33. Kinloch, A. J., Adhesion and Adhesives-Science and Technology, Chapman and Hill, New York, 1987.
    34. Tay, A. A. O., and Goh, K. Y., “A Study of Delemination Growth in the Die-Attach Layer of Plastic IC Packages Under Hygrothermal Loading During Solder Reflow,” 1999 Electronic Components and Technology Conference, pp. 694-701.
    35. Park, Y. B. and Yu, J., “A Fracture Mechanics Analysis of the Popcorn Cracking in the Plastic IC Packaging,” 1997 IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 12-19.
    36. Le Gall, C. A., Qu, J. and McDowell, D. L., “Delamination Cracking in Encapsulated Flip Chips,” 1996 Electronic Components and Technology Conference, pp. 430-434.
    37. Soboyejo, W. O. and Kenner, V., “Mixed Mode Fracture in Electronic Packages,” Materials Research Society Symposium Proceeding, Vol. 445, pp. 263-268, 1997.
    38. Lee, K. Y. and Lee, T. S., “Hygrothermal Fracture Analysis of Plastic IC Package in Reflow Soldering Process,” Journal of Electronic Packaging, Vol. 121, pp. 148-155, 1999.
    39. Pearson, R. A., Lloyd, T. B. and Nied, H. F., “Fracture Behavior of Underfill Resins and Their Application to Filp-Chip on Organic Substrate Assemblies,” Advances in Electronic Packaging, EEP-Vol. 26-2, pp. 1749-1754, 1999.
    40. Ileri, L. and Madenci, E., “Crack Initiation and Growth in Electronic Packages,” 1995 Electronic Components and Technology Conference, pp. 970-976.
    41. Pecht, M. G., Electronic Packaging Materials and Their Properties, CRC Press, Boca Raton, FL, 1999.
    42. Lau, J. H. and Lee, S. W. R., “Temperature-Dependent Popcorning Analysis of Plastic Ball Grid Array Package During Solder Reflow with Fracture Mechanics Method,” Journal of Electronic Packaging, Vol. 122, pp. 34-41, 2000.
    43. DeSalvo, G. J. and Gorman, R. W., ANSYS Engineering Analysis System User’s Manual, Vol. 1, Ch. 2.21, Swanson Analysis System Incorporation, Houston, 1989.
    44. DeSalvo, G. J. and Gorman, R. W., ANSYS Engineering Analysis System User’s Manual:Fracture Mechanics, Swanson Analysis System Incorporation, Houston, 1989.
    45. Cook, R. D., Malkus, D. S. and Plesha, M. E., Concepts and Applications of Finite Element Analysis, 3rd ed., Wiley, New York, 1989.
    46. Yehia, N. A. B. and Shephard, M. S., “On the Effect of Quarter-Point Element Size on Fracture Criteria,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 1911-1924, 1985.
    47. Saouma, V. E. and Schwemmer, D., “Numerical Evaluation of the Quarter-point Crack Tip Element,” International Journal of Numerical Methods in Engineering, Vol. 20, pp. 1629-1641, 1984.
    48. JEDEC, JESD22-A113-A, June 1995, “Preconditioning of Plastic Surface Mount Device Prior to Reliability Testing,” JEDEC Standard, Electronic Industries Association, Arlington, VA, pp. 1-5.
    49. Liu, S. and Mei, Y., “Behavior of Delaminated Plastic IC Packages Subjected to Encapsulation Cooling, Moisture Absorption, and Wave Soldering,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 18, No. 3, pp. 634-645, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE